题目列表(包括答案和解析)
(本题满分10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.
1.(1)求证:DE∥BF;
2.(2)若∠G=90,求证四边形DEBF是菱形.
(本题满分14分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=____ _cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
(本题满分10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.
1.(1)求证:DE∥BF;
2.(2)若∠G=90,求证四边形DEBF是菱形.
(本题满分10分)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF 是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)
(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),
①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是 ▲ .
②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);
此时,点P的坐标为 ▲ ,最短周长为 ▲ .
(本题满分8分)如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.
1.(1)求证:△DFA∽△ABE;(4分)
2.(2)试求y与x之间的函数关系式,并求出自变量的取值范围. (4分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com