课本作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀.分成3张小纸片.使每张小纸片都是等腰三角形.你能办到吗?请画示意图说明剪法. 我们有多种剪法.图1是其中的一种方法: 定义:如果两条线段将一个三角形分成3个等腰三角形.我们把这两条线段叫做这个三角形的三分线. (1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线.并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形.则视为同一种), (2)△ABC中.∠B=30°.AD和DE是△ABC的三分线.点D在BC边上.点E在AC边上.且AD=BD.DE=CE.设∠C=.试画出示意图.并求出所有可能的值, (3)如图3.△ABC中.AC=2.BC=3.∠C=2∠B.请画出△ABC的三分线.并求出三分线的长. 查看更多

 

题目列表(包括答案和解析)

我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只。现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有_______只,兔有________只。

查看答案和解析>>

(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB

∠C,BE⊥DE,垂足为E,DE与AB相交于点F.

(1)当AB=AC时,(如图13),

① ∠EBF=_______°;

② 探究线段BE与FD的数量关系,并加以证明;

(2)当AB=kAC时(如图14),求的值(用含k的式子表示).

 

  

 

查看答案和解析>>

(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB

∠C,BE⊥DE,垂足为E,DE与AB相交于点F.

(1)当AB=AC时,(如图13),

① ∠EBF=_______°;

② 探究线段BE与FD的数量关系,并加以证明;

(2)当AB=kAC时(如图14),求的值(用含k的式子表示).

 

  

 

查看答案和解析>>

(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB
∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图13),
① ∠EBF=_______°;
② 探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图14),求的值(用含k的式子表示).
  

查看答案和解析>>

(本题12分)在正方形网格中以点为圆心,为半径作圆交网格于点(如图(1)),过点作圆的切线交网格于点,以点为圆心,为半径作圆交网格于点
(如图(2)).

图15

 
问题:

(1)求的度数;
(2)求证:
(3)可以看作是由经过怎样的变换得到的?并判断的形状(不用说明理由).
(4)如图(3),已知直线,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形,使三个顶点,分别在直线上.要求写出简要的画图过程,不需要说明理由.

查看答案和解析>>


同步练习册答案