28.我们知道:平行四边形的面积 =× . 如下图.四边形ABCD都是平行四边形, AD∥BC, AB∥CD, 设它的面积为. (1) 如图①, 点M为AD上任意一点.则△BCM的面积S1= . △BCD的面积S2与△BCM的面积S1的数量关系是 . (2) 如图②.设AC.BD交于点O, 则O为AC.BD的中点.试探究△AOB的面积与 △COD的面积之和S3与平行四边形的面积的数量关系. (3) 如图③,点P为平行四边形ABCD内任意一点时, 记△PAB的面积为Sˊ, △PCD的面积为S〞,平行四边形ABCD的面积为S, 猜想得Sˊ. S〞的和与S的数量关系式为 . (4)如图④, 已知点P为平行四边形ABCD内任意一点, △PAB的面积为3, △PBC的面积为7, 求△PBD的面积. 查看更多

 

题目列表(包括答案和解析)

我们知道:平行四边形的面积=(底边)×(这条底边上的高).
如图,四边形ABCD都是平行四边形,AD∥BC,AB∥CD,设它的面积为S.
(1)如图①,点M为AD上任意一点,则△BCM的面积S1=
1
2
1
2
S,
△BCD的面积S2与△BCM的面积S1的数量关系是
S1=S2
S1=S2

(2)如图②,设AC、BD交于点O,则O为AC、BD的中点,试探究△AOB的面积与△COD的面积之和S3与平行四边形的面积S的数量关系.
(3)如图③,点P为平行四边形ABCD内任意一点时,记△PAB的面积为Sˊ,△PCD的面积为S〞,平行四边形ABCD的面积为S,猜想得Sˊ、S〞的和与S的数量关系式为
S′+S″=
1
2
S
S′+S″=
1
2
S

(4)如图④,已知点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.

查看答案和解析>>

我们知道:平行四边形的面积=(底边)×(这条底边上的高).
如图,四边形ABCD都是平行四边形,AD∥BC,AB∥CD,设它的面积为S.作业宝
(1)如图①,点M为AD上任意一点,则△BCM的面积S1=______S,
△BCD的面积S2与△BCM的面积S1的数量关系是______.
(2)如图②,设AC、BD交于点O,则O为AC、BD的中点,试探究△AOB的面积与△COD的面积之和S3与平行四边形的面积S的数量关系.
(3)如图③,点P为平行四边形ABCD内任意一点时,记△PAB的面积为Sˊ,△PCD的面积为S〞,平行四边形ABCD的面积为S,猜想得Sˊ、S〞的和与S的数量关系式为______.
(4)如图④,已知点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.

查看答案和解析>>

39、我们知道,平行四边形的对角相等,其证明过程如下,请在每一步括号内填写理由.
已知:如图,四边形ABCD是平行四边形.
求证:∠A=∠C,∠B=∠D.

查看答案和解析>>

我们知道,平行四边形的对角相等,其证明过程如下,请在每一步括号内填写理由.
已知:如图,四边形ABCD是平行四边形.
求证:∠A=∠C,∠B=∠D.

查看答案和解析>>

28. (本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,

(1)求抛物线解析式.

(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.

(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案