如图.已知△ABC中.∠ACB=90°. (1)利用尺规作图.作一个点P.使得点P到∠ACB两边的距离相等.且PA=PB, (2)试判断△ABP的形状.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分7分)

(1)(3分)计算:

 

(2)(4分)已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.

求证:AE=BE.

 

查看答案和解析>>

(本小题满分10分)

    学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(   )A.       B.1  C.      D.2

 

(2)对于,∠A的正对值sad A的取值范围是        .

(3)已知,其中为锐角,试求sad的值.

 

 

查看答案和解析>>

(本小题满分5分)

已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,联结EB交OD于点F.

(1)求证:OD⊥BE;

(2)若DE=,AB=5,求AE的长.

 

查看答案和解析>>

(本小题满分5分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,联结EB交OD于点F.

(1)求证:OD⊥BE;

(2)若DE=,AB=5,求AE的长.

 

 

 

查看答案和解析>>

(本小题满分10分)

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即 “以形助数”。                                                            

如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=900,CD⊥AB,D为垂足。易证得两个结论:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D为垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。

(2)请你用数形结合的“以形助数”思想来解: 设a、b、c、d都是正数,满足a:b=c:d,且a最大。求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)

 

查看答案和解析>>


同步练习册答案