(Ⅰ)求四棱锥的体积,(Ⅱ)求异面直线OB与MD所成角的大小. 得分评卷人 查看更多

 

题目列表(包括答案和解析)

四棱锥P-ABCD中,PA⊥底面ABCD,其中底面ABCD为梯形,AD∥BC,AB⊥BC,且AP=AB=AD=2BC=6,M在棱PA上,满足AM=2MP.
(Ⅰ)求三棱锥M-BCD的体积;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)证明:PC∥面MBD.

查看答案和解析>>

四棱锥P-ABCD中,PA⊥底面ABCD,其中底面ABCD为梯形,AD∥BC,AB⊥BC,且AP=AB=AD=2BC=6,M在棱PA上,满足AM=2MP.
(Ⅰ)求三棱锥M-BCD的体积;
(Ⅱ)求异面直线PC与AB所成角的余弦值;
(Ⅲ)证明:PC∥面MBD.

查看答案和解析>>

精英家教网若四棱锥P-ABCD的底面是边长为2的正方形,PA⊥底面ABCD(如图),且PA=2
3

(1)求异面直线PD与BC所成角的大小;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

精英家教网在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60°.
(1)求四棱锥P-ABCD的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

若四棱锥P-ABCD的底面是边长为2的正方形,PA⊥底面ABCD(如图),且数学公式
(1)求异面直线PD与BC所成角的大小;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

一.填空题:

1.;   2.;                   3.        4.2;        5.4;

6.45;      7.;    8.8;           9.3;        10.

    二.选择题:11.B ;     12. C;     13. C.

三.解答题:

15.解:(Ⅰ)由已知可求得,正方形的面积,……………………………2分

所以,求棱锥的体积 ………………………………………4分

(Ⅱ)方法一(综合法)

设线段的中点为,连接

为异面直线OC与所成的角(或其补角) ………………………………..1分

       由已知,可得

为直角三角形      ……………………………………………………………….2分

, ……………………………………………………………….4分

所以,异面直线OC与MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直线为轴建立坐标系,

, ……………………………………………………2分

, ………………………………………………………………………………..2分

 设异面直线OC与MD所成角为

.……………………………….. …………………………3分

 OC与MD所成角的大小为.…………………………………………………1分

16.[解一]由已知,在中,,………………………….2分

由正弦定理,得……………………………6分

因此,…………………………………………5分

.……………………………………………………………………2分

[解二] 延长交地平线与,…………………………………………………………………3分

由已知,得…………………………………………………4分

整理,得………………………………………………………………………8分

17.[解](Ⅰ)函数的定义域为…………………………………………………………2分

时,因为,所以

,从而,……………………………………………………..4分

所以函数的值域为.………………………………………………………………..1分

(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,

时,函数是奇函数.…………………………………………………………….3分

,且时,函数是非奇非偶函数.………………………………………….1分

对于任意的,且

……………………………………………..4分

时,函数是递减函数.………………………………………………..1分

18.[解](Ⅰ)因为,且边通过点,所以所在直线的方程为.1分

两点坐标分别为

   得

所以.  ……………………………………………..4分

又因为边上的高等于原点到直线的距离.

所以. ……………………………………….3分

(Ⅱ)设所在直线的方程为, ……………………………………………..1分

. …………………………………..2分

因为在椭圆上,所以. ………………….. …………..1分

两点坐标分别为

所以.……………………………………………..3分

又因为的长等于点到直线的距离,即.……………..2分

所以.…………………..2分

所以当时,边最长,(这时

此时所在直线的方程为.  ……………………………………………..1分

17.[解](Ⅰ)由题意,……………………………6分

(Ⅱ)解法1:由

因此,可猜测)     ………………………………………………………4分

代入原式左端得

左端

即原式成立,故为数列的通项.……………………………………………………….3分

用数学归纳法证明得3分

解法2:由

,且

,……… ……………………………………………………………..4分

所以

因此,...,

将各式相乘得………………………………………………………………………………3分

(Ⅲ)设上表中每行的公比都为,且.因为

所以表中第1行至第9行共含有数列的前63项,故在表中第10行第三列,………2分

因此.又,所以.…………………………………..3分

…………………………………………2分

 

 


同步练习册答案