题目列表(包括答案和解析)
己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.
20.如图1,在平面内,是的矩形,是正三角形,将沿折起,使如图2,为的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。
(1)求证:平面;
(2)设二面角的平面角为,若,求线段长的取值范围。
21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数 ,
(Ⅰ)若在上存在最大值与最小值,且其最大值与最小值的和为,试求和的值。
(Ⅱ)若为奇函数:
(1)是否存在实数,使得在为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;
(2)如果当时,都有恒成立,试求的取值范围.
已知的顶点在椭圆上,在直线上,且.
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.
已知的顶点在椭圆上,在直线上,且.
(Ⅰ)当边通过坐标原点时,求的长及的面积;
(Ⅱ)当,且斜边的长最大时,求所在直线的方程.
已知的顶点在椭圆上,在直线上,且.
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.
一.填空题:
1.; 2.; 3. 4.2; 5.4;
6.45; 7.; 8.8; 9.3; 10..
二.选择题:11.B ; 12. C; 13. C.
三.解答题:
15.解:(Ⅰ)由已知可求得,正方形的面积,……………………………2分
所以,求棱锥的体积 ………………………………………4分
(Ⅱ)方法一(综合法)
设线段的中点为,连接,
则为异面直线OC与所成的角(或其补角) ………………………………..1分
由已知,可得,
为直角三角形 ……………………………………………………………….2分
, ……………………………………………………………….4分
.
所以,异面直线OC与MD所成角的大小. …………………………..1分
方法二(向量法)
以AB,AD,AO所在直线为轴建立坐标系,
则, ……………………………………………………2分
,, ………………………………………………………………………………..2分
设异面直线OC与MD所成角为,
.……………………………….. …………………………3分
OC与MD所成角的大小为.…………………………………………………1分
16.[解一]由已知,在中,,,………………………….2分
由正弦定理,得……………………………6分
因此,…………………………………………5分
.……………………………………………………………………2分
[解二] 延长交地平线与,…………………………………………………………………3分
由已知,得…………………………………………………4分
整理,得………………………………………………………………………8分
17.[解](Ⅰ)函数的定义域为…………………………………………………………2分
,
当时,因为,所以,
,从而,……………………………………………………..4分
所以函数的值域为.………………………………………………………………..1分
(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,
即
当时,函数是奇函数.…………………………………………………………….3分
当,且时,函数是非奇非偶函数.………………………………………….1分
对于任意的,且,
……………………………………………..4分
当时,函数是递减函数.………………………………………………..1分
18.[解](Ⅰ)因为,且边通过点,所以所在直线的方程为.1分
设两点坐标分别为.
由 得.
所以. ……………………………………………..4分
又因为边上的高等于原点到直线的距离.
所以,. ……………………………………….3分
(Ⅱ)设所在直线的方程为, ……………………………………………..1分
由得. …………………………………..2分
因为在椭圆上,所以. ………………….. …………..1分
设两点坐标分别为,
则,,
所以.……………………………………………..3分
又因为的长等于点到直线的距离,即.……………..2分
所以.…………………..2分
所以当时,边最长,(这时)
此时所在直线的方程为. ……………………………………………..1分
17.[解](Ⅰ)由题意,……………………………6分
(Ⅱ)解法1:由且知
,,
,,
因此,可猜测() ………………………………………………………4分
将,代入原式左端得
左端
即原式成立,故为数列的通项.……………………………………………………….3分
用数学归纳法证明得3分
解法2:由 ,
令得,且
即,……… ……………………………………………………………..4分
所以
因此,,...,
将各式相乘得………………………………………………………………………………3分
(Ⅲ)设上表中每行的公比都为,且.因为,
所以表中第1行至第9行共含有数列的前63项,故在表中第10行第三列,………2分
因此.又,所以.…………………………………..3分
则.…………………………………………2分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com