记表中的第一列数...- .构成数列. 查看更多

 

题目列表(包括答案和解析)

将数列{an} 中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn} 中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
数学公式.请解答以下问题:
(1)求数列{bn} 的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式数学公式数学公式上有解,求正整数k的取值范围.

查看答案和解析>>

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:

a1

aa3

a4   a5  a6

a7  a8   a9    a10记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足=1(n≥2).

(Ⅰ)证明数列成等差数列,并求数列{bn}的通项公式;

(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)求数列的前项和的表达式.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)求数列的前项和的表达式.

查看答案和解析>>

将正数数列中的所有项按每一行比上一行多一项的规则排成数表,如图所示。记表中各行的第一个数构成数列为,各行的最后一个数构成数列为,第行所有数的和为。已知数列是公差为的等差数列,从第二行起,每一行中的数按照从左到右的顺序每一个数与它前面一个数的比是常数,且.

(1)求数列的通项公式。

(2)(理科)记

求证:

查看答案和解析>>

一.填空题:

1.;   2.;                   3.        4.2;        5.4;

6.45;      7.;    8.8;           9.3;        10.

    二.选择题:11.B ;     12. C;     13. C.

三.解答题:

15.解:(Ⅰ)由已知可求得,正方形的面积,……………………………2分

所以,求棱锥的体积 ………………………………………4分

(Ⅱ)方法一(综合法)

设线段的中点为,连接

为异面直线OC与所成的角(或其补角) ………………………………..1分

       由已知,可得

为直角三角形      ……………………………………………………………….2分

, ……………………………………………………………….4分

所以,异面直线OC与MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直线为轴建立坐标系,

, ……………………………………………………2分

, ………………………………………………………………………………..2分

 设异面直线OC与MD所成角为

.……………………………….. …………………………3分

 OC与MD所成角的大小为.…………………………………………………1分

16.[解一]由已知,在中,,………………………….2分

由正弦定理,得……………………………6分

因此,…………………………………………5分

.……………………………………………………………………2分

[解二] 延长交地平线与,…………………………………………………………………3分

由已知,得…………………………………………………4分

整理,得………………………………………………………………………8分

17.[解](Ⅰ)函数的定义域为…………………………………………………………2分

时,因为,所以

,从而,……………………………………………………..4分

所以函数的值域为.………………………………………………………………..1分

(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,

时,函数是奇函数.…………………………………………………………….3分

,且时,函数是非奇非偶函数.………………………………………….1分

对于任意的,且

……………………………………………..4分

时,函数是递减函数.………………………………………………..1分

18.[解](Ⅰ)因为,且边通过点,所以所在直线的方程为.1分

两点坐标分别为

   得

所以.  ……………………………………………..4分

又因为边上的高等于原点到直线的距离.

所以. ……………………………………….3分

(Ⅱ)设所在直线的方程为, ……………………………………………..1分

. …………………………………..2分

因为在椭圆上,所以. ………………….. …………..1分

两点坐标分别为

所以.……………………………………………..3分

又因为的长等于点到直线的距离,即.……………..2分

所以.…………………..2分

所以当时,边最长,(这时

此时所在直线的方程为.  ……………………………………………..1分

17.[解](Ⅰ)由题意,……………………………6分

(Ⅱ)解法1:由

因此,可猜测)     ………………………………………………………4分

代入原式左端得

左端

即原式成立,故为数列的通项.……………………………………………………….3分

用数学归纳法证明得3分

解法2:由

,且

,……… ……………………………………………………………..4分

所以

因此,...,

将各式相乘得………………………………………………………………………………3分

(Ⅲ)设上表中每行的公比都为,且.因为

所以表中第1行至第9行共含有数列的前63项,故在表中第10行第三列,………2分

因此.又,所以.…………………………………..3分

…………………………………………2分

 

 


同步练习册答案