(Ⅱ)若.对于任何.都有.且.求数列 的通项公式, 查看更多

 

题目列表(包括答案和解析)

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f''(x)是函数y=f(x)的导数
y=f'(x)的导数,若方程f''(x)=0有实数解,则称点(,f())为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3﹣3x2+3x对称中心为(   ).
(2)若函数g(x)=x3x2+3x﹣+,则g()+g()+g()+
g()+…+g()=(   ).

查看答案和解析>>

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有数学公式
(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有
(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

查看答案和解析>>

一.填空题:

1.;   2.;                   3.        4.2;        5.4;

6.45;      7.;    8.8;           9.3;        10.

    二.选择题:11.B ;     12. C;     13. C.

三.解答题:

15.解:(Ⅰ)由已知可求得,正方形的面积,……………………………2分

所以,求棱锥的体积 ………………………………………4分

(Ⅱ)方法一(综合法)

设线段的中点为,连接

为异面直线OC与所成的角(或其补角) ………………………………..1分

       由已知,可得

为直角三角形      ……………………………………………………………….2分

, ……………………………………………………………….4分

所以,异面直线OC与MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直线为轴建立坐标系,

, ……………………………………………………2分

, ………………………………………………………………………………..2分

 设异面直线OC与MD所成角为

.……………………………….. …………………………3分

 OC与MD所成角的大小为.…………………………………………………1分

16.[解一]由已知,在中,,………………………….2分

由正弦定理,得……………………………6分

因此,…………………………………………5分

.……………………………………………………………………2分

[解二] 延长交地平线与,…………………………………………………………………3分

由已知,得…………………………………………………4分

整理,得………………………………………………………………………8分

17.[解](Ⅰ)函数的定义域为…………………………………………………………2分

时,因为,所以

,从而,……………………………………………………..4分

所以函数的值域为.………………………………………………………………..1分

(Ⅱ)假设函数是奇函数,则,对于任意的,有成立,

时,函数是奇函数.…………………………………………………………….3分

,且时,函数是非奇非偶函数.………………………………………….1分

对于任意的,且

……………………………………………..4分

时,函数是递减函数.………………………………………………..1分

18.[解](Ⅰ)因为,且边通过点,所以所在直线的方程为.1分

两点坐标分别为

   得

所以.  ……………………………………………..4分

又因为边上的高等于原点到直线的距离.

所以. ……………………………………….3分

(Ⅱ)设所在直线的方程为, ……………………………………………..1分

. …………………………………..2分

因为在椭圆上,所以. ………………….. …………..1分

两点坐标分别为

所以.……………………………………………..3分

又因为的长等于点到直线的距离,即.……………..2分

所以.…………………..2分

所以当时,边最长,(这时

此时所在直线的方程为.  ……………………………………………..1分

17.[解](Ⅰ)由题意,……………………………6分

(Ⅱ)解法1:由

因此,可猜测)     ………………………………………………………4分

代入原式左端得

左端

即原式成立,故为数列的通项.……………………………………………………….3分

用数学归纳法证明得3分

解法2:由

,且

,……… ……………………………………………………………..4分

所以

因此,...,

将各式相乘得………………………………………………………………………………3分

(Ⅲ)设上表中每行的公比都为,且.因为

所以表中第1行至第9行共含有数列的前63项,故在表中第10行第三列,………2分

因此.又,所以.…………………………………..3分

…………………………………………2分

 

 


同步练习册答案