题目列表(包括答案和解析)
一段长为32米的篱笆围成一个一边靠墙的矩形菜园,墙长18米,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
【解析】解:令矩形与墙垂直的两边为宽并设矩形宽为,则长为
所以矩形的面积 () (4分=128 (8分)
当且仅当时,即时等号成立,此时有最大值128
所以当矩形的长为=16,宽为8时,
菜园面积最大,最大面积为128 (13分)答:当矩形的长为16米,宽为8米时。菜园面积最大,最大面积为128平方米(注:也可用二次函数模型解答)
1 |
f(x) |
1 |
2 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
2 |
f(n) |
2n-1 |
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值;
(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
【解析】第一问当时,,则。
依题意得:,即 解得
第二问当时,,令得,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,,则。
依题意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①当时,,令得
当变化时,的变化情况如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
单调递减 |
极小值 |
单调递增 |
极大值 |
单调递减 |
又,,。∴在上的最大值为2.
②当时, .当时, ,最大值为0;
当时, 在上单调递增。∴在最大值为。
综上,当时,即时,在区间上的最大值为2;
当时,即时,在区间上的最大值为。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。
不妨设,则,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则代入(*)式得:
即,而此方程无解,因此。此时,
代入(*)式得: 即 (**)
令 ,则
∴在上单调递增, ∵ ∴,∴的取值范围是。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上
一. 填空题(每题4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理、文7; 7. 理
二.选择题(每题4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答题. 17.(本题满分12分)解:由已知得 (3分)
∴, ∴ (6分)
∴ 又,即,∴ (9分)
∴的面积S=. (12分)
18.(本题满分12分)解:∵,∴ (5分)
∵,欲使是纯虚数,
而=
(7分)
∴, 即
(11分)
∴当时,是纯虚数.
(12分)
19.(本题满分14分,第1小题满分9分,第2小题满分5分)
解:(1)依题意设,则, (2分)
(4分) 而,
∴,即, (6分) ∴ (7分)
从而. (9分)
(2)平面,
∴直线到平面的距离即点到平面的距离 (2分)
也就是的斜边上的高,为. (5分)
20.(本题满分14分,第1小题满分8分,第2小题满分6分)
解:(1)不正确.
(2分)
没有考虑到还可以小于.
(3分)
正确解答如下:
令,则,
当时,,即
(5分)
当时,,即
(7分)
∴或,即既无最大值,也无最小值.
(8分)
(2)(理)对于函数,令
①当时,有最小值,,
(9分)
当时,,即,当时,即
∴或,即既无最大值,也无最小值.
(10分)
②当时,有最小值,,
此时,,∴,即,既无最大值,也无最小值 .(11分)
③当时,有最小值,,即 (12分)
∴,即,
∴当时,有最大值,没有最小值.
(13分)
∴当时,既无最大值,也无最小值。
当时,有最大值,此时;没有最小值.
(14分)
(文)∵, ∴ (12分)
∴函数的最大值为(当时)而无最小值. (14分)
21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)
解:(1) (4分)
(2)由解得 (7分)
所以第个月更换刀具. (8分)
(3)第个月产生的利润是: (9分)
个月的总利润:(11分)
个月的平均利润: (13分)
由 且
在第7个月更换刀具,可使这7个月的平均利润最大(13.21万元) (14分)此时刀具厚度为(mm) (16分)
22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)
解:(1) (4分)
(2)各点的横坐标为: (8分)
(3)过作斜率为的直线交抛物线于另一点, (9分)
则一般性的结论可以是:
点 的相邻横坐标之和构成以为首项和公比的等比数列(或:点无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)
证明:设过点作斜率为的直线交抛物线于点由
得或;
点的横坐标为,则 (14分)
于是两式相减得: (16分)
=
故点无限逼近于点
同理无限逼近于点 (18分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com