刀具厚度 查看更多

 

题目列表(包括答案和解析)

用切削机床进行金属制品加工时,为了适当地调整机床,应该测定刀具的磨损速度,每隔一定时间(例如:1h)测量刀具的厚度,测得结果如下:


时间x

0

1

2

3

4

5

6

7

8

厚度y

30.0

29.1

28.4

28.1

28.0

28.0

27.7

27.5

27.2

时间x

9

10

11

12

13

14

15

16

厚度y

26.8

26.5

26.3

26.1

25.7

25.3

24.8

24.0

试根据上述资料:

(1)    画出散点图;

(2)    变量xy之间是否具有线性关系?

(3)    如果xy具有线性关系,求出线性回归方程。

查看答案和解析>>

用切削机床进行金属制品加工时,为了适当地调整机床,应该测定刀具的磨损速度,每隔一定时间(例如:1h)测量刀具的厚度,测得结果如下:


时间x

0

1

2

3

4

5

6

7

8

厚度y

30.0

29.1

28.4

28.1

28.0

28.0

27.7

27.5

27.2

时间x

9

10

11

12

13

14

15

16

厚度y

26.8

26.5

26.3

26.1

25.7

25.3

24.8

24.0

试根据上述资料:

(1)    画出散点图;

(2)    变量xy之间是否具有线性关系?

(3)    如果xy具有线性关系,求出线性回归方程。

查看答案和解析>>

用切削机床进行金属品加工时,为了适时地调整机床,需要测定刀具的磨损速度,每隔一小时测量刀具的厚度,得到数据如下:

时间xi

刀具厚度yi

时间xi

刀具厚度yi

时间xi

刀具厚度yi

0

30.0

6

27.5

12

26.1

1

29.1

7

27.2

13

25.7

2

28.4

8

27.0

14

25.3

3

28.1

9

26.8

15

24.8

4

28.0

10

26.5

16

24.0

5

27.7

11

26.3

 

 

求刀具厚度关于切削时间的线性回归方程.

查看答案和解析>>

用切削机床进行金属品加工时,为了适当地调整机床,应该测定刀具的磨损速度,在一定时间(例如每隔1 h)测量刀具的厚度,测得结果如下:

时间xi(h)

刀具厚度yi(cm)

 

时间xi(h)

刀具厚度yi(cm)

0

30.0

9

26.8

1

29.1

10

26.5

2

28.4

11

26.3

3

28.1

12

26.1

4

28.0

13

25.7

5

27.7

14

25.3

6

27.5

15

24.8

7

27.2

16

24.0

8

27.0

 

试求刀具厚度关于切削时间的线性回归方程.

查看答案和解析>>

为了测定某型号采煤机截齿刀片的磨损速度,技术工人经过一定的时间x(如每隔一天),测量一次刀片的厚度y(mm),得到一组实测数据如下表:

(1)画出散点图,并根据散点图描述刀片厚度y与天数x之间的关系;

(2)若y和x具有线性相关关系,用最小二乘法求线性回归方程y=bx+a,并预计第10天的刀片厚度;

(3)该煤矿开采场用0.81万元购买一批采煤机截齿刀片全部用于采煤,使用中维修费用逐天上升.第n天的维修费用为0.02 n万元,每天其他的费用为0.09万元.若报废损失指购买刀片费,维修费及其他费用之和的日平均值,则这批采煤机截齿刀片应在多少天后报废最合算(即使用多少天的平均费用最少)?

查看答案和解析>>

一. 填空题(每题4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.选择题(每题4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答题.  17.(本题满分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面积S=.            (12分)

18.(本题满分12分)解:∵,∴       (5分)

,欲使是纯虚数,

=                      (7分)
   ∴,  即                     (11分)
   ∴当时,是纯虚数.                      (12分)

19.(本题满分14分,第1小题满分9分,第2小题满分5分)

解:(1)依题意设,则,                (2分)

       (4分)    而

,即,    (6分)    ∴       (7分)

从而.                            (9分)

(2)平面

∴直线到平面的距离即点到平面的距离           (2分)

也就是的斜边上的高,为.                (5分)

20.(本题满分14分,第1小题满分8分,第2小题满分6分)

解:(1)不正确.                          (2分)
   没有考虑到还可以小于.                  (3分)
   正确解答如下:
   令,则
   当时,,即                  (5分)
   当时,,即                  (7分)
   ∴,即既无最大值,也无最小值.           (8分)

(2)(理)对于函数,令
  ①当时,有最小值,,                   (9分)

时,,即,当时,即

,即既无最大值,也无最小值.           (10分)
  ②当时,有最小值,, 

此时,,∴,即既无最大值,也无最小值       .(11分)
  ③当时,有最小值,,即   (12分)
,即
∴当时,有最大值,没有最小值.             (13分)
∴当时,既无最大值,也无最小值。
 当时,有最大值,此时;没有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函数的最大值为(当时)而无最小值.     (14分)

21.(本满分16分,第1、2小题满分各4分,第3小题满分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第个月更换刀具.                                       (8分)

(3)第个月产生的利润是:   (9分)

个月的总利润:(11分)

个月的平均利润:     (13分)

 且

在第7个月更换刀具,可使这7个月的平均利润最大(13.21万元) (14分)此时刀具厚度为(mm)                  (16分)

22.(本题满分18分,第1、2小题满分各4分,第3小题满分10分)

解:(1)              (4分)

(2)各点的横坐标为:           (8分)

(3)过作斜率为的直线交抛物线于另一点,            (9分)

则一般性的结论可以是:

的相邻横坐标之和构成以为首项和公比的等比数列(或:点无限趋向于某一定点,且其横(纵)坐标之差成等比数列;或:无限趋向于某一定点,且其横(纵)坐标之差成等比数列,等)(12分)

证明:设过点作斜率为的直线交抛物线于点

          得;       

的横坐标为,则               (14分)

于是两式相减得:            (16分)

=  

故点无限逼近于点      

同理无限逼近于点                          (18分)

 

 

 


同步练习册答案