证明:(1)由题得..∴被直线分隔. 解:(2)由题得.直线与曲线无交点 即无解 ∴或.∴ 证明:由题得.设.∴. 化简得.点的轨迹方程为. ①当过原点的直线斜率存在时.设方程为. 联立方程.. 令..显然是开口朝上的二次函数 ∴由二次函数与幂函数的图像可得.必定有解.不符合题意.舍去 ②当过原点的直线斜率不存在时.其方程为. 显然与曲线没有交点.在曲线上找两点. ∴.符合题意 综上所述.仅存在一条直线是的分割线. 证明:由题得.设.∴. 化简得.点的轨迹方程为. 显然与曲线没有交点.在曲线上找两点. ∴.符合题意.∴是的分割线. 查看更多

 

题目列表(包括答案和解析)

已知数列满足,

(1)求证:数列是等比数列;

(2)求数列的通项和前n项和

【解析】第一问中,利用,得到从而得证

第二问中,利用∴ ∴分组求和法得到结论。

解:(1)由题得 ………4分

                    ……………………5分

   ∴数列是以2为公比,2为首项的等比数列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>

(理)(本小题8分)如图,在四棱锥中,底面是矩形, 平面,以的中点为球心、为直径的球面交于点.

(1) 求证:平面平面

(2)求点到平面的距离.  

证明:(1)由题意,在以为直径的球面上,则

平面,则

平面

平面

∴平面平面.       (3分)

(2)∵的中点,则点到平面的距离等于点到平面的距离的一半,由(1)知,平面,则线段的长就是点到平面的距离

 

     ∵在中,

     ∴的中点,                 (7分)

     则点到平面的距离为                 (8分)

    (其它方法可参照上述评分标准给分)

 

 

查看答案和解析>>

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

已知正数数列{an }中,a1 =2.若关于x的方程 ()对任意自然数n都有相等的实根.

(1)求a2 ,a3的值;

(2)求证

【解析】(1)中由题意得△,即,进而可得,. 

(2)中由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,利用裂项求和得到不等式的证明。

(1)由题意得△,即,进而可得   

(2)由于,所以,因为,所以数列是以为首项,公比为2的等比数列,知数列是以为首项,公比为的等比数列,于是

,

所以

 

查看答案和解析>>


同步练习册答案