已知椭圆C:.点M与C的焦点不重合.若M关于C的焦点的对称点分别为A.B.线段MN的中点在C上.则 . 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则         .

查看答案和解析>>

已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则         .

查看答案和解析>>

已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则         .

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的某个焦点为F,双曲线G:
x2
a2
-
y2
b2
=1
(a,b>0)的某个焦点为F.
(1)请在
 
上补充条件,使得椭圆的方程为
x2
3
+y2=1
;友情提示:不可以补充形如a=
3
,b=1
之类的条件.
(2)命题一:“已知抛物线y2=2px(p>0)的焦点为F,定点P(m,n)满足n2-2pm>0,以PF为直径的圆交y轴于A、B,则直线PA、PB与抛物线相切”.命题中涉及了这么几个要素:对于任意抛物线P(x,y),定点P,以PF为直径的圆交F(0,1)轴于A、B,PA、PB与抛物线相切.试类比上述命题分别写出一个关于椭圆C和双曲线G的类似正确的命题;
(3)证明命题一的正确性.

查看答案和解析>>


同步练习册答案