6.根据如下样本数据 x 3 4 5 6 7 8 y 4.0 2.5 0.5 得到的回归方程为.则 A.. B.. C.. D.. 查看更多

 

题目列表(包括答案和解析)

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(I)如果按性别比例分层抽样,男、女生各抽取多少名才符合抽样要求?
(II)随机抽出8名,他们的数学、物理分数对应如下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
(i)若规定85分以上(包括85分)为优秀,在该班随机调查一名同学,他的数学和物理分数均为优秀的概率是多少?
(ii)根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,说明理由.
参考公式:相关系数r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2

回归直线的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a=
.
y
-b
.
x
?
y
i
是与xi对应的回归估计值.
参考数据:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(yi-
.
y
)
2
≈457
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
457
≈21.4
550
≈23.5

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(2)随机抽取8位同学,
数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
学生编号 1 2 3 4 5 6 7 8
数学分数x 60 65 70 75 80 85 90 95
物理分数y 72 77 80 84 88 90 93 95
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
a=
.
y
-b
.
x
;参考数据:
.
x
=77.5
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
457
≈21.4
550
≈23.5

查看答案和解析>>

班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.

(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果).

(Ⅱ)随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.

若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;

(2)若这8位同学的数学、物理分数对应如下表:

学生编号

1

2

3

4

5

6

7

8

数学分数x

60

65

70

75

80

85

90

95

物理分数y

72

77

80

84

88

90

93

95

 根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.

    参考公式:相关系数

    回归直线的方程是:

    其中对应的回归估计值.

参考数据:

 

查看答案和解析>>


同步练习册答案