21.解:(1)由题意可得直线: ① 查看更多

 

题目列表(包括答案和解析)

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

 (08年莆田四中一模理)有以下几个命题:

①由的图象向右平移个单位长度可以得到的图象;

②若,则使取得最大值和最小值的最优解都有无数多个;

③若为一平面内两非零向量,则的充要条件;

④过空间上任意一点有且只有一个平面与两条异面直线都平行。

⑤若椭圆的左、右焦点分别为是该椭圆上的任意一点,则点关于的外角平分线的对称点的轨迹是圆。其中真命题的序号为        .(写出所有真命题的序号)

 

查看答案和解析>>

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

(1)椭圆Ca>b>0)与x轴交于AB两点,点P是椭圆C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值

(2)由(1)类比可得如下真命题:双曲线Ca>0,b>0)与x轴交于AB两点,点P是双曲线C上异于AB的任意一点,直线PAPB分别与y轴交于点MN,求证:为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>


同步练习册答案