②“a>b>0 是“ 的充要条件, 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中abc满足a>b>c,a+b+c=0,(a,b,c∈R).

(1)求证:两函数的图象交于不同的两点AB

(2)求线段ABx轴上的射影A1B1的长的取值范围.

查看答案和解析>>

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).

(1)求椭圆C的方程;

(2)Q(x0,y0)(x0y00)为椭圆C上一点.过点Qx轴的垂线,垂足为E.取点A(0,2),连接AE,过点AAE的垂线交x轴于点D.G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

 

查看答案和解析>>

设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b

≠0时,都有>0.

 

(1)若a>b,试比较f(a)与f(b)的大小;

(2)解不等式f(x-)<f(x-);

 

(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

 

查看答案和解析>>

(97理科)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式

①f(b)-f(-a)>g(a)-g(-b);    ②f(b)-f(-a)<g(a)-g(-b);

③f(a)-f(-b)>g(b)-g(-a);    ④f(a)-f(-b)<g(b)-g(-a),

其中成立的是 

(A)①与④              (B)②与③           (C)①与③          (D)②与④

 

查看答案和解析>>

已知函数f(x)=(xa)·(xb)(其中a>b),若f(x)的图象如图所示,则函数g(x)=axb的图象是(  )

查看答案和解析>>

一、选择题:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空题:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答题:

26解:(1)

,有

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是

              

代入得。          

27证明:(1)∵

                                        

(2)令中点为中点为,连结

的中位线

         

又∵

   

为正

        

又∵

∴四边形为平行四边形   

 

28解:(1)设米,,则

                                               

                                       

                                           

(2)                 

 

 

 此时                                            

(3)∵

                         

时,

上递增                    

此时                                             

答:(1)

(2)当的长度是4米时,矩形的面积最小,最小面积为24平方米

(3)当的长度是6米时,矩形的面积最小,最小面积为27平方米。                            

29解:(1)①若直线的斜率不存在,即直线是,符合题意。 

②若直线斜率存在,设直线,即

由题意知,圆心以已知直线的距离等于半径2,即:

解之得                                           

所求直线方程是                          

(2)解法一:直线与圆相交,斜率必定存在,且不为0,可设直线方程为

                  

又直线垂直,由

为定值。

是定值,且为6。                          

30解:(1)由题意得,                            

    ∴   

,∴

单调增函数,                                         

对于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程为               

 令

 ∵,当时,

上为增函数;

 时,, 

上为减函数,  

 当时,                    

,            

∴函数在同一坐标系的大致图象如图所示,

∴①当,即时,方程无解。

②当,即时,方程有一个根。

③当,即时,方程有两个根                                                                                                     

 


同步练习册答案