(1)且≥.可得 查看更多

 

题目列表(包括答案和解析)

可行域
x+y-3≥0
x-2y+3≥0
2x-y-3≤0
的顶点是A(1,2),B(2,1),C(3,3).z=kx+y(k为常数),若使得z取得的最大值为4,且最优解是唯一的,则k=
1
3
1
3

查看答案和解析>>

可行域的顶点是A(1,2),B(2,1),C(3,3).z=kx+y(k为常数),若使得z取得的最大值为4,且最优解是唯一的,则k=   

查看答案和解析>>

精英家教网如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60°(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4
3
km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为θ.
(1)将tanθ 表示为x的函数;
(2)求点D的位置,使θ取得最大值.

查看答案和解析>>

如图,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=
2
5
,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用、从点O到山脚修路的造价为a万元/km,原有公路改建费用为
a
2
万元/km、当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元、已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=
3
(km)

(Ⅰ)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;
(Ⅱ)对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小.
(Ⅲ)在AB上是否存在两个不同的点D′,E′,使沿折线PD′E′O修建公路的总造价小于(Ⅱ)中得到的最小总造价,证明你的结论、
精英家教网

查看答案和解析>>

为赢得2010年上海世博会的制高点,某公司最近进行了世博特许产品的市场分析,调查显示,该产品每件成本9元,售价为30元,每天能卖出432件,该公司可以根据情况可变化价格x(-30≤x≤54)元出售产品;若降低价格,则销售量增加,且每天多卖出的产品件数与商品单价的降低值|x|的平方成正比,已知商品单价降低2元时,每天多卖出24件;若提高价格,则销售减少,减少的件数与提高价格x成正比,每提价1元则每天少卖8件,且仅在提价销售时每件产品被世博管委会加收1元的管理费.
(Ⅰ)试将每天的销售利润y表示为价格变化值x的函数;
(Ⅱ)试问如何定价才能使产品销售利润最大?

查看答案和解析>>


同步练习册答案