[问题提出] 学习了三角形全等的判定方法(即)和直角三角形全等的判定方法(即)后.我们继续对“两个三角形满足两边和其中一边的对角对应相等 的情形进行研究. [初步思考] 我们不妨将问题用符号语言表示为:在和中. 然后.对进行分类.可以分为“是直角.钝角.锐角 三种情况进行探究. [深入探究] 第一种情况:当为直角时.≌ (1)如图①.在和中.根据 .可以知道Rt≌Rt. 第二种情况:当为钝角时.≌ (2)如图②.在和中.且都是钝角.求证:≌. 第三种情况:当为锐角时.和不一定全等 (3)如图②.在和中.且都是锐角.请你用尺规在图③中作出和不全等.(不写作法.保留作图痕迹). (4)还要满足什么条件.就可以使得≌.请直接填写结论: 在和中.且都是锐角.若 .则≌. 查看更多

 

题目列表(包括答案和解析)


【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据       ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若       ,则△ABC≌△DEF.

查看答案和解析>>

【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,          
求证:                     
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:




其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

【问题提出】

规定:四条边对应相等,四个角对应相等的两个四边形全等.

我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.

【初步思考】

在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.

【深入探究】

小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:

Ⅰ一条边和四个角对应相等;

Ⅱ二条边和三个角对应相等;

Ⅲ三条边和二个角对应相等;

Ⅳ四条边和一个角对应相等.

(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.

(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.

已知:如图,          

求证:                     

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:

其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

 

查看答案和解析>>

【问题提出】

规定:四条边对应相等,四个角对应相等的两个四边形全等.

我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.

【初步思考】

在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.

【深入探究】

小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:

Ⅰ一条边和四个角对应相等;

Ⅱ二条边和三个角对应相等;

Ⅲ三条边和二个角对应相等;

Ⅳ四条边和一个角对应相等.

(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.

(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.

已知:如图,          

求证:                     

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:

其中能判定四边形和四边形全等的是      (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

【问题提出】
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
【初步思考】
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,          
求证:                     
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:




其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>


同步练习册答案