13.导数 ⑴导数定义:f(x)在点x0处的导数记作, ⑵常见函数的导数公式: ①,②,③, ④,⑤,⑥,⑦, ⑧ .⑶导数的四则运算法则: ⑸导数的应用:①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在 还是“过 该点的切线?②利用导数判断函数单调性:ⅰ 是增函数, ⅱ 为减函数,ⅲ 为常数, ③利用导数求极值:ⅰ求导数,ⅱ求方程的根,ⅲ列表得极值. ④利用导数最大值与最小值:ⅰ求的极值,ⅱ求区间端点值,ⅲ得最值. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=数学公式
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,数学公式)是否是函数f(x)的“上线区间”(不必证明).

查看答案和解析>>

已知函数f(x)=
-x2+x,(x≤1)
lnx,(x>1)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设P(x1,y1),Q(x2,y2)是函数f(x)图象上的两点且x1<1,x2>1,若直线PQ是函数f(x)图象的切线且P、Q都是切点,求证:3<x2<4;(参考数据:ln2≈0.6931,ln3≈1.0986)
(Ⅲ)设函数g(x)的定义域为D,区间I⊆D,若函数g(x)在I上可导,对任意的x0∈I,g(x)的图象在(x0,g(x0))处的切线为l,函数g(x)图象上所有的点都在直线l上方或直线l上,则称区间I为函数g(x)的“下线区间”.类比上面的定义,请你写出函数“上线区间”的定义,并根据你所给的定义,判断区间(-∞,
3
8
)是否是函数f(x)的“上线区间”(不必证明).

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:
定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义(2):设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+ax+2在x=-1处取得极大值.请回答下列问题:
(1)当x∈[0,4]时,求f(x)的最小值和最大值;
(2)求函数f(x)的“拐点”A的坐标,并检验函数f(x)的图象是否关于“拐点”A对称.

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0)有如下定义:
定义(1):设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义(2):设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+ax+2在x=-1处取得极大值.请回答下列问题:
(1)当x∈[0,4]时,求f(x)的最小值和最大值;
(2)求函数f(x)的“拐点”A的坐标,并检验函数f(x)的图象是否关于“拐点”A对称.

查看答案和解析>>


同步练习册答案