三.解答题18. 如图.在△ABC中.∠BAC是钝角.完成下列画图. (1)∠BAC的平分线AD, (2)AC边上的中线BE, (3)AC边上的高BF, 查看更多

 

题目列表(包括答案和解析)

解答题
①已知:如图,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求:AD的长.
②如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?

查看答案和解析>>

解答题
①已知:如图,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求:AD的长.
②如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?

查看答案和解析>>

阅读解答题:
已知如图①,锐角△ABC中,AB、AC边上的高CE、BD相交于O点.若∠A=n°,求∠BOC的度数.
解:∵CE、BD是高
∴∠BEO=90°,∠BDA=90°
在△ABD中,∵∠ADB=90°,∠A=n°
∴∠ABD=90°-n°
∴∠BOC=∠BEO+∠ABD=90°+90°-n°=180°-n°
即∠BOC的度数为(180-n)°
(1)若将题中已知条件“锐角△ABC”改为“钝角△ABC,且∠A为钝角”,其它条件不变(图②),请你求出∠BOC的度数.
(2)若将题中已知条件“锐角△ABC”改为“钝角△ABC,且∠B为钝角”,其它条件不变(图③),请你求出∠BOC的度数.

查看答案和解析>>

阅读解答题:
已知如图①,锐角△ABC中,AB、AC边上的高CE、BD相交于O点.若∠A=n°,求∠BOC的度数.
解:∵CE、BD是高
∴∠BEO=90°,∠BDA=90°
在△ABD中,∵∠ADB=90°,∠A=n°
∴∠ABD=90°-n°
∴∠BOC=∠BEO+∠ABD=90°+90°-n°=180°-n°
即∠BOC的度数为(180-n)°
(1)若将题中已知条件“锐角△ABC”改为“钝角△ABC,且∠A为钝角”,其它条件不变(图②),请你求出∠BOC的度数.
(2)若将题中已知条件“锐角△ABC”改为“钝角△ABC,且∠B为钝角”,其它条件不变(图③),请你求出∠BOC的度数.

查看答案和解析>>

精英家教网如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12.在AB上取一点E.使A、D、E三点组成的三角形与△ABC相似,则AE的长为(  )
A、16B、14C、16或14D、16或9

查看答案和解析>>


同步练习册答案