一.选择题:1.在区间[ ,2]上.函数f(x)=x2+px+q与g(x)=2x+ 在同一点取得相同 的最 小值.那么f(x)在[ ,2]上的最大值是 ( ) A. B.4 C.8 D. 查看更多

 

题目列表(包括答案和解析)

(2012•菏泽一模)已知定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex
(Ⅰ)当t>1时,求函数y=f(x)的单调区间;
(Ⅱ)设m=f(-2),n=f(t).试证明:m<n;
(Ⅲ)设g(x)=f(x)+(x-2)ex,当x>1时试判断方程g(x)=x根的个数.

查看答案和解析>>

(2013•韶关一模)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为f′n(x),且满足.
(Ⅰ)设函数g(x)=f2n-1(x)•fn(1-x),求g(x)的极大值与极小值;
(Ⅱ)试求关于x的方程
f′n(1+x)
f′n+1(1+x)
=
2n-1
2n+1-1
在区间(0,1)上的实数根的个数.

查看答案和解析>>

(2013•盐城一模)对于定义在区间D上的函数f(x),若任给x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)试判断f(x)=x-1在区间[-2.1]上是否封闭,并说明理由;
(1)若函数g(x)=
3x+ax+1
在区间[3,10]上封闭,求实数a的取值范围;
(1)若函数h(x)=x3-3x在区间[a,b[(a,b∈Z)上封闭,求a,b的值.

查看答案和解析>>

(2012•徐汇区一模)对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.
(1)求证:函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切的x∈R恒成立,求实数t的取值范围;
(3)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“U型”函数,求实数m和n的值.

查看答案和解析>>

(2007•温州一模)定义在区间D上的函数f(x)=(x-1)2的值域为[0,1],则D可以是
[0,2](答案不唯一)
[0,2](答案不唯一)

查看答案和解析>>


同步练习册答案