即.而.所以. ------- 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>

我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式。人们还用过一些类似的近似公式。根据=3.14159…..判断,下列近似公式中最精确的一个是

查看答案和解析>>

如图,长方体中,底面是正方形,的中点,是棱上任意一点。

(Ⅰ)证明: ;

(Ⅱ)如果=2 ,=,, 求 的长。

 【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,设,由,即,解得,即 的长为

 

查看答案和解析>>

求圆心在直线上,且经过原点及点的圆的标准方程.

【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(),然后利用,得到,从而圆心,半径.可得原点 标准方程。

解:设圆心C的坐标为(),...........2分

,即

,解得........4分

所以圆心,半径...........8分

故圆C的标准方程为:.......10分

 

查看答案和解析>>

中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列

(Ⅰ)求角的大小;

(Ⅱ)若,求的值.

【解析】第一问中利用依题意,故

第二问中,由题意又由余弦定理知

,得到,所以,从而得到结论。

(1)依题意,故……………………6分

(2)由题意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>


同步练习册答案