三.解答题15. 在平面直角坐标系中.已知.. (1)求以点为圆心.且经过点的圆的标准方程, (2)若直线的方程为.判断直线与(1)中圆的位置关系.并说明理由. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知向量
OF
=(c,0)(c为常数,且c>0)
OG
=(x,x)(x∈R)
,|
FG
|
的最小值为1,
OE
=(
a2
C
,t
)(a为常数,且a>c,t∈R).动点P同时满足下列三个条件:
(1)|
PF
|=
c
a
|
PE
|;(2)
PE
OF
(λ∈R,且λ≠0)

(2)动点P的轨迹C经过点B(0,-1).
(Ⅰ)求曲线C的方程;
(Ⅱ)是否存在方向向量为m=(1,k)(k≠0)的直线l,l与曲线C相交于M、N两点,使|
BM
|=|
BN
|,且
BM
BN
的夹角为
60°?若存在,求出k值,并写出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

(2012•道里区三模)在平面直角坐标系中,已知A1(-
2
,0),A2(
2
,0),P(x,y),M(x,1),N(x,-2)
,若实数λ使得λ2
OM
ON
=
A1P
A2P
(O为坐标原点).
(Ⅰ) 求P点的轨迹方程,并讨论P点的轨迹类型;
(Ⅱ) 当λ=
2
2
时,是否存在过点B(0,2)的直线l与(Ⅰ)中P点的轨迹交于不同的两点E,F(E在B,F之间),且[
S△OBE
S△EOF
>1
.若存在,求出该直线的斜率的取值范围,若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

在平面直角坐标系中,已知三点A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圆为圆,椭圆
x2
4
+
y2
2
=1
的右焦点为F.
(1)求圆M的方程;
(2)若点P为圆M上异于A、B的任意一点,过原点O作PF的垂线交直线x=2
2
于点Q,试判断直线PQ与圆M的位置关系,并给出证明.

查看答案和解析>>

在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),满足向量
AnAn+1
与向量
BnCn
平行,并且点列{Bn}在斜率为6的同一直线上,n=1,2,3,….
(1)证明:数列{bn}是等差数列;
(2)试用a1,b1与n表示an(n≥2);
(3)设a1=a,b1=-a,是否存在这样的实数a,使得在a6与a7两项中至少有一项是数列{an}的最小项?若存在,请求出实数a的取值范围;若不存在,请说明理由;
(4)若a1=b1=3,对于区间[0,1]上的任意λ,总存在不小于2的自然数k,当n≥k时,an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>


同步练习册答案