题目列表(包括答案和解析)
(本小题满分12分)
如下图,O1(– 2,0),O2(2,0),圆O1与圆O2的半径都是1,
(1) 过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得.求动点P的轨迹方程;
(2) 若直线交圆O2于A、B,又点C(3,1),当m取何值时,△ABC的面积最大?
本小题满分12分)
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
(本小题满分12分)
如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在A1B1上,且满足=λ(λ∈R).
(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;
(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.
(本小题满分12分)
如下图,O1(– 2,0),O2(2,0),圆O1与圆O2的半径都是1,
(1) 过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得.求动点P的轨迹方程;
(2) 若直线交圆O2于A、B,又点C(3,1),当m取何值时,△ABC的面积最大?
(本小题满分12分)
如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在A1B1上,且满足=λ(λ∈R).
(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;
(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com