A.2 B.1 C. D.0 查看更多

 

题目列表(包括答案和解析)

(    )

A、0         B、1          C、2         D、3

 

查看答案和解析>>

A、B是抛物线C:y2=2px(p>0)上的两个动点,F是焦点,直线AB不垂直于x轴且交x轴于点D.
(1)若D与F重合,且直线AB的倾斜角为
π
4
,求证:
OA
OB
p2
是常数(O是坐标原点);
(2)若|AF|+|BF|=8,线段AB的垂直平分线恒过定点Q(6,0),求抛物线C的方程.

查看答案和解析>>

a、b为实数且b-a=2,若多项式函数f(x)在区间(a,b)上的导数f′(x)满足f′(x)<0,则一定成立的关系式是(  )

查看答案和解析>>

A、B、C、D四点的坐标依次是(-1,0)、(0,2)、(4,3)、(3,1),则四边形ABCD为(    )

A.正方形              B.矩形               C.菱形               D.平行四边形

查看答案和解析>>

a、b∈N*,则同时过不同三点(a,0)、(0,b)、(1,3)的直线条数为(    )

A.1            B.2              C.3            D.多于3

查看答案和解析>>

一、选择题:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空题:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面体内任意一点到各个面的距离之和等于此正四面体的高   25.5/7   26.   

三、解答题:

27解:(I)

(II)由   得

          

x的取值范围是

28解:(1)甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为

(2)乙队以2:0获胜的概率为

乙队以2:1获胜的概率为

∴乙队获胜的概率为P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

由①②解得a=1,b=3

(2)

30解:(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                 

 注:也可用向量法求侧棱长.

(2)解法1:过,连

侧面为二面角的平面角.

中,

中,

故二面角的大小为.      

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面

中,

中点,到平面的距离为. 

解法2:(思路)取中点,连

,易得平面平面,且交线为

过点,则的长为点到平面的距离.

解法3:(思路)等体积变换:由可求.

解法4:(向量法,见后)

题(Ⅱ)、(Ⅲ)的向量解法:

(2)解法2:如图,建立空间直角坐标系

为平面的法向量.

.取

又平面的一个法向量

结合图形可知,二面角的大小为.     

(3)解法4:由(2)解法2,

到平面的距离

31解:(1)由已知,),

),且

∴数列是以为首项,公差为1的等差数列.

(2)∵,∴,要使恒成立,

恒成立,

恒成立,

恒成立.

(?)当为奇数时,即恒成立,

当且仅当时,有最小值为1,

(?)当为偶数时,即恒成立,

当且仅当时,有最大值

,又为非零整数,则

综上所述,存在,使得对任意,都有

32解:(1)∵,∴

又∵,∴

,∴椭圆的标准方程为.    

(2)显然的斜率不为0,当的斜率不为0时,设方程为

代入椭圆方程整理得:

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                      

 

 


同步练习册答案