28甲.乙两支蓝球队进行比赛.已知每一场甲队获胜的概率为0.6.乙队获胜的概率为0.4.每场比赛均要分出胜负.比赛时采用三场两胜制.即先取得两场胜利的球队胜出.(1)求甲队以二比一获胜的概率,(2)求乙队获胜的概率. 查看更多

 

题目列表(包括答案和解析)

(08年宝鸡市质检二文)  甲、乙两支蓝球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获胜的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出。

    (1)求甲队以二比一获胜的概率;

    (2)求乙队获胜的概率。

查看答案和解析>>

20、现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为S2=0.32,S2=0.26,则身高较整齐的球队是
队.

查看答案和解析>>

某篮球职业球赛总决赛在甲、乙两支球队之间进行,比赛采用三局二胜制,即哪个队先胜两场即可获得总冠军.已知在每场比赛中,甲队获胜的概率为
2
3
,乙队获胜的概率为
1
3

求:①甲队以2:1获胜的概率;②第一场乙队胜的条件下,甲队获胜的概率.
P(B|A))=
P(AB)
P(A)
表示事件B在事件A的条件下的概率)

查看答案和解析>>

16、甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获得的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出.
(Ⅰ)求甲队以二比一获胜的概率;
(Ⅱ)求乙队获胜的概率;

查看答案和解析>>

16、甲、乙两支篮球队进行比赛,已知每一场甲队获胜的概率为0.6,乙队获得的概率为0.4,每场比赛均要分出胜负,比赛时采用三场两胜制,即先取得两场胜利的球队胜出.
(Ⅰ)求甲队以二比一获胜的概率;
(Ⅱ)求乙队获胜的概率;
(Ⅲ)若比赛采用五场三胜制,试问甲获胜的概率是增大还是减小,请说明理由.

查看答案和解析>>

一、选择题:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空题:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面体内任意一点到各个面的距离之和等于此正四面体的高   25.5/7   26.   

三、解答题:

27解:(I)

(II)由   得

          

x的取值范围是

28解:(1)甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为

(2)乙队以2:0获胜的概率为

乙队以2:1获胜的概率为

∴乙队获胜的概率为P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

由①②解得a=1,b=3

(2)

30解:(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                 

 注:也可用向量法求侧棱长.

(2)解法1:过,连

侧面为二面角的平面角.

中,

中,

故二面角的大小为.      

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面

中,

中点,到平面的距离为. 

解法2:(思路)取中点,连

,易得平面平面,且交线为

过点,则的长为点到平面的距离.

解法3:(思路)等体积变换:由可求.

解法4:(向量法,见后)

题(Ⅱ)、(Ⅲ)的向量解法:

(2)解法2:如图,建立空间直角坐标系

为平面的法向量.

.取

又平面的一个法向量

结合图形可知,二面角的大小为.     

(3)解法4:由(2)解法2,

到平面的距离

31解:(1)由已知,),

),且

∴数列是以为首项,公差为1的等差数列.

(2)∵,∴,要使恒成立,

恒成立,

恒成立,

恒成立.

(?)当为奇数时,即恒成立,

当且仅当时,有最小值为1,

(?)当为偶数时,即恒成立,

当且仅当时,有最大值

,又为非零整数,则

综上所述,存在,使得对任意,都有

32解:(1)∵,∴

又∵,∴

,∴椭圆的标准方程为.    

(2)显然的斜率不为0,当的斜率不为0时,设方程为

代入椭圆方程整理得:

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                      

 

 


同步练习册答案