32如图.设是椭圆的左焦点.直线为对应的准线.直线与轴交于点.为椭圆的长轴.已知.且.(1)求椭圆的标准方程,(2)求三角形△ABF面积的最大值. 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=
6
2
,求直线AF的斜率.

查看答案和解析>>

如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,一个焦点坐标为F(-
3
,0)

(1)求椭圆C1的方程;
(2)点N是椭圆的左顶点,点P是椭圆C1上不同于点N的任意一点,连接
NP并延长交椭圆右准线与点T,求
TP
NP
的取值范围;
(3)设曲线C2:y=x2-1与y轴的交点为M,过M作两条互相垂直的直线与曲线C2、椭圆C1相交于点A、D和B、E,(如图),记△MAB、
△MDE的面积分别是S1,S2,当
S1
S2
=
27
64
时,求直线AB的方程.

查看答案和解析>>

(2012•江苏)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1-BF2=
6
2
求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.

查看答案和解析>>

(2013•汕头一模)如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(I)求椭圆的标准方程;
(II)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

一、选择题:

1.B   2.C  3.D   4.C   5. B   6.A   7. C   8.A  9.A  10. B 11.B  12. A

二、填空题:

13.       14.      15.       16.     

17. 360     18.      19.       20.1320    21.2/5   22.5    23. 9/8      24. 正四面体内任意一点到各个面的距离之和等于此正四面体的高   25.5/7   26.   

三、解答题:

27解:(I)

(II)由   得

          

x的取值范围是

28解:(1)甲队以二比一获胜,即前两场中甲胜1场,第三场甲获胜,其概率为

(2)乙队以2:0获胜的概率为

乙队以2:1获胜的概率为

∴乙队获胜的概率为P2=P'2+P''2=0.16+0.192=0.352.

29解:(1)

由①②解得a=1,b=3

(2)

30解:(1)设正三棱柱的侧棱长为.取中点,连

是正三角形,

又底面侧面,且交线为

侧面

,则直线与侧面所成的角为

中,,解得

此正三棱柱的侧棱长为.                 

 注:也可用向量法求侧棱长.

(2)解法1:过,连

侧面为二面角的平面角.

中,

中,

故二面角的大小为.      

(3)解法1:由(2)可知,平面,平面平面,且交线为

,则平面

中,

中点,到平面的距离为. 

解法2:(思路)取中点,连

,易得平面平面,且交线为

过点,则的长为点到平面的距离.

解法3:(思路)等体积变换:由可求.

解法4:(向量法,见后)

题(Ⅱ)、(Ⅲ)的向量解法:

(2)解法2:如图,建立空间直角坐标系

为平面的法向量.

.取

又平面的一个法向量

结合图形可知,二面角的大小为.     

(3)解法4:由(2)解法2,

到平面的距离

31解:(1)由已知,),

),且

∴数列是以为首项,公差为1的等差数列.

(2)∵,∴,要使恒成立,

恒成立,

恒成立,

恒成立.

(?)当为奇数时,即恒成立,

当且仅当时,有最小值为1,

(?)当为偶数时,即恒成立,

当且仅当时,有最大值

,又为非零整数,则

综上所述,存在,使得对任意,都有

32解:(1)∵,∴

又∵,∴

,∴椭圆的标准方程为.    

(2)显然的斜率不为0,当的斜率不为0时,设方程为

代入椭圆方程整理得:

即:

当且仅当,即(此时适合于的条件)取到等号.

∴三角形△ABF面积的最大值是.                      

 

 


同步练习册答案