(m.n不同时为0)的距离分别为d1.d2.且直线L与椭圆M相切.试求d1?d2的值 (3)试写出一个能判断直线与椭圆的位置关系的充要条件.并证明 中得出的结论类比到其它曲线.请同学们给出自己研究的有关结论 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

椭圆G:的左、右焦点分别为,M是椭圆上的一点,且满足=0.

   (1)求离心率e的取值范围;

   (1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5

①求此时椭圆G的方程;

②设斜率为的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,

问:A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范

围;若不能,请说明理由.

 

查看答案和解析>>

(本小题满分12分)

椭圆G:的左、右焦点分别为,M是椭圆上的一点,且满足=0.

   (1)求离心率e的取值范围;

   (1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5

①求此时椭圆G的方程;

②设斜率为的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,

问:A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范

围;若不能,请说明理由.

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
d2
d1
=
2
2

(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线l1:x=-
a2
c
、点F(-c,0)、曲线C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断
 
 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线、点F(-c,0)、曲线C:,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断______ (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).

查看答案和解析>>

已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且

(I)求动点P所在曲线C的方程。

(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)

 

查看答案和解析>>


同步练习册答案