:点P与点F(2.0)的距离比它到直线+4=0的距离小2.所以点P与点F(2.0)的距离与它到直线+2=0的距离相等. ---- 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

(2007•浦东新区二模)已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程.
(2)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中点,过M作平行于x轴的直线交抛物线C于点D,得到△ABD;再分别过弦AD、BD的中点作平行于x轴的直线依次交抛物线C于点E,F,得到△ADE和△BDF;按此方法继续下去.
解决下列问题:
①求证:a2=
16(1-kb)k2

②计算△ABD的面积S△ABD
③根据△ABD的面积S△ABD的计算结果,写出△ADE,△BDF的面积;请设计一种求抛物线C与线段AB所围成封闭图形面积的方法,并求出此封闭图形的面积.

查看答案和解析>>


同步练习册答案