由抛物线定义得:点在以为焦点直线+2=0为准线的抛物线上. ---- 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>


同步练习册答案