解法(B):设动点.则.当时..化简得:.显然.而.此时曲线不存在.当时..化简得:. 查看更多

 

题目列表(包括答案和解析)

设动点M(x,y)(x≥0)到定点F(2,0)的距离比它到y轴的距离大2.
(Ⅰ)求动点M的轨迹方程C;
(Ⅱ)设过点F的直线l交曲线C于A,B两点,O为坐标原点,求△AOB面积的最小值.

查看答案和解析>>

(2013•崇明县二模)已知椭圆C的方程为
x2
a2
+
y2
2
= 1
(a>0),其焦点在x轴上,点Q(
2
2
7
2
)
为椭圆上一点.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:
x
2
0
+2
y
2
0
为定值;
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

已知抛物线C的方程为x2=4y.设动点E(a,-2 ),其中a∈R,过点E分别作抛物线C的两条切线EA,EB,切点为A(x1,y1)、B(x2,y2).
(1)求证:A,E,B三点的横坐标依次成等差数列;
(2)求直线AB经过的定点坐标.

查看答案和解析>>

已知点A(-1,0),B(1,0),动点P(x,y)满足:PA与PB的斜率之积为3.设动点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)记点F(-2,0),曲线E上的任意一点C(x1,y1)满足:x1<-1,x1≠-2且y1>0,设∠CFB=α,∠CBF=β.
①求证:tanα=tan2β;
②设过点C的直线x=-
13
y+b
与轨迹E相交于另一点D(x2,y2)(x2<-1,y2<0),若∠FCB与∠FDB互补,求实数b的值.

查看答案和解析>>

直角梯形ABCD,如图1,动点P从B点出发,由B→C→D→A沿边运动,设动点P运动的路程为x,△ABP面积为f(x),已知f(x)图象如图2,则△ABC面积为(  )

查看答案和解析>>


同步练习册答案