所以直线AB的斜率为. --4分(2)推广的评分要求分三层一层:点P到一般或斜率到一般,或抛物线到一般 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知椭圆C的中心在原点,焦点在x轴上,离心率为
1
2
,短轴长为4
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
1
2

①求四边形APBQ面积的最大值;
②设直线PA的斜率为k1,直线PB的斜率为k2,判断k1+k2的值是否为常数,并说明理由.

查看答案和解析>>

已知两点A(2,1),B(3,3),则直线AB的斜率为(  )

查看答案和解析>>

(2012•泰州二模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点为F1(2,0),离心率为e.
(1)若e=
2
2
,求椭圆的方程;
(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.
①证明点A在定圆上;
②设直线AB的斜率为k,若k
3
,求e的取值范围.

查看答案和解析>>

(2013•深圳二模)已知函数f(x)=lnx-ax2-(1-2a)x(a>0).
(1)求函数f(x)的最大值;
(2)求函数f(x)在区间(
1ea
,2)上的零点的个数(e为自然对数的底数);
(3)设函数y=f(x)图象上任意不同的两点为A(x1,y1)、B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,证明:k>f′(x0).

查看答案和解析>>


同步练习册答案