②若|x|+|y|.则使x+y取得最大值和最小值的最优解都有无数多个, 查看更多

 

题目列表(包括答案和解析)

(南开中学模拟)有以下几个命题:

A.曲线a=(12)平移可得曲线

B.若,则使xy取得最大值和最小值的最优解都有无数多个;

C.设AB为两个定点,m为常数,,则动点P的轨迹为椭圆;

D.若椭圆的左、右焦点分别为P是该椭圆上的任意一点,则点关于“外角平分线”的对称点M的轨迹是圆.

其中真命题的代号为___________(按照原顺序写出所有真命题的代号)

查看答案和解析>>

平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成,若在D上有无穷多个点(x,y)可使目标函数z=x+my(m<0)取得最大值,则m等于(  )

A.-2                 B.-1            C.1               D.4

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

一、选择题:(本大题共10小题,每小题5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空题:(本大题共6小题,每小题4分,共24分 )

11  (文)“若,则” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答题:(本大题共6个解答题,满分76分,)

17  (文)解:以AN所在直线为x轴,AN的中垂

线为y轴建立平面直角坐标系如图所示,

则A(-4,0),N(4,0),设P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐标得:        

整理得:                        

                            

所以动点P的轨迹是以点

(理)解:(I)当a=1时  

                            

 或         

                               

(II)原不等式              

 

当且仅当

                    

依题有:10a<10  ∴为所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程组解得,可参考给分

(理)解:(Ⅰ)设    (a≠0),则

           ……     ①

          ……    ②

又∵有两等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)无极值

       ∴方程

      

      得                      

19  (文)解:(I)当a=1时  

                            

 或         

                              

(II)原不等式              

 

当且仅当

                   

依题有:10a<10  ∴为所求                       

 

(理)解:以AN所在直线为x轴,AN的中垂

线为y轴建立平面直角坐标系如图所示,

则A(-4,0),N(4,0),设P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐标得:        

整理得:                       

                            

所以动点P的轨迹是以点

20  (文)解:(Ⅰ)设    (a≠0),则

           ……     ①

          ……    ②

又∵有两等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)无极值

       ∴方程

      

      得                             

(理)解:(I)设       (1)

     (2)

由(1),(2)解得              

(II)由向量与向量的夹角为

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范围是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,进而可知an+3

所以,故数列{3+an}是首相为6,公比为2的等比数列,

所以3+an=6,即an=3()                           

同步练习册答案