其中真命题的序号为 ; 查看更多

 

题目列表(包括答案和解析)

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:
①M中的元素都不是P的元素;
②M中有不属于P的元素;
③M中有P的元素;
④M中元素不都是P的元素.
其中真命题的序号是
②④
②④
(写出你认为是真命题的所有序号)

查看答案和解析>>

已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:
①M中的元素都不是P的元素;
②M中有不属于P的元素;
③M中有P的元素;
④M中元素不都是P的元素.
其中真命题的序号是______(写出你认为是真命题的所有序号)

查看答案和解析>>

下列命题:
①幂函数都具有奇偶性; 
②命题P:?x∈[-1,1],满足,使命题P为真的实数a的取值范围为a<3;
③代数式的值与角a有关;
④将函数的图象向左平移个单位长度后得到的图象所对应的函数是奇函数; 
⑤已知数列{an}满足:a1=m,a2=n,an+2=an+1-an(n∈N),记Sn=a1+a2+…an,则S2011=m;
其中正确的命题的序号是      (请把正确命题的序号全部写出来)

查看答案和解析>>

下列命题:
①幂函数都具有奇偶性; 
②命题P:?x∈[-1,1],满足,使命题P为真的实数a的取值范围为a<3;
③代数式的值与角a有关;
④将函数的图象向左平移个单位长度后得到的图象所对应的函数是奇函数; 
⑤已知数列{an}满足:a1=m,a2=n,an+2=an+1-an(n∈N),记Sn=a1+a2+…an,则S2011=m;
其中正确的命题的序号是      (请把正确命题的序号全部写出来)

查看答案和解析>>

一、选择题:(本大题共10小题,每小题5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空题:(本大题共6小题,每小题4分,共24分 )

11  (文)“若,则” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答题:(本大题共6个解答题,满分76分,)

17  (文)解:以AN所在直线为x轴,AN的中垂

线为y轴建立平面直角坐标系如图所示,

则A(-4,0),N(4,0),设P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐标得:        

整理得:                        

                            

所以动点P的轨迹是以点

(理)解:(I)当a=1时  

                            

 或         

                               

(II)原不等式              

 

当且仅当

                    

依题有:10a<10  ∴为所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程组解得,可参考给分

(理)解:(Ⅰ)设    (a≠0),则

           ……     ①

          ……    ②

又∵有两等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)无极值

       ∴方程

      

      得                      

19  (文)解:(I)当a=1时  

                            

 或         

                              

(II)原不等式              

 

当且仅当

                   

依题有:10a<10  ∴为所求                       

 

(理)解:以AN所在直线为x轴,AN的中垂

线为y轴建立平面直角坐标系如图所示,

则A(-4,0),N(4,0),设P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐标得:        

整理得:                       

                            

所以动点P的轨迹是以点

20  (文)解:(Ⅰ)设    (a≠0),则

           ……     ①

          ……    ②

又∵有两等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)无极值

       ∴方程

      

      得                             

(理)解:(I)设       (1)

     (2)

由(1),(2)解得              

(II)由向量与向量的夹角为

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范围是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),两式相减并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,进而可知an+3

所以,故数列{3+an}是首相为6,公比为2的等比数列,

所以3+an=6,即an=3()                           

同步练习册答案