1.从命题形式来看.涉及立体几何内容的命题形式最为多变 . 除保留传统的“四选一 的选择题型外.还尝试开发了“多选填空 .“完型填空 .“构造填空 等题型.并且这种命题形式正在不断完善和翻新,解答题则设计成几个小问题.此类考题往往以多面体为依托.第一小问考查线线.线面.面面的位置关系.后面几问考查空间角.空间距离.面积.体积等度量关系.其解题思路也都是“作――证――求 .强调作图.证明和计算相结合. 查看更多

 

题目列表(包括答案和解析)

课外研究题:将一块圆心角为,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.

教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。

参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径上,或让矩形一边与弦平行。从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.

查看答案和解析>>

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC。

(I)     证明PC平面BED;

(II)   设二面角A-PB-C为90°,求PD与平面PBC所成角的大小

【解析】本试题主要是考查了四棱锥中关于线面垂直的证明以及线面角的求解的运用。

从题中的线面垂直以及边长和特殊的菱形入手得到相应的垂直关系和长度,并加以证明和求解。

解法一:因为底面ABCD为菱形,所以BDAC,又

【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题和相似,底面也是特殊的菱形,一个侧面垂直于底面的四棱锥问题,那么创新的地方就是点E的位置的选择是一般的三等分点,这样的解决对于学生来说就是比较有点难度的,因此最好使用空间直角坐标系解决该问题为好。

 

查看答案和解析>>

9、命题“如果a,b都是奇数,则ab是奇数”的否命题形式为
如果a,b不都是奇数,则ab不是奇数
,否命题为
真命题
(填“真命题,假命题”)

查看答案和解析>>

1、命题“梯形的两对角线互相不平分”的命题形式为(  )

查看答案和解析>>

2、已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为α、β,则cos2α+cos2β=1.若把它推广到空间长方体中,试写出相应的命题形式:
cos2α+cos2β+cos2γ=1

查看答案和解析>>


同步练习册答案