(Ⅱ)因为四边形为菱形.且. 查看更多

 

题目列表(包括答案和解析)

“因为四边形ABCD为矩形,所以四边形ABCD的对角线相等”,补充以上推理的大前提为(     )

A.矩形都是对角线相等的四边形           B.正方形都是对角线相等的四边形

C.等腰梯形都是对角线相等的四边形        D.矩形都是对边平行且相等的四边形

 

查看答案和解析>>

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.

(I)求证:平面

(II)求证:

(III)设PD=AD=a, 求三棱锥B-EFC的体积.

【解析】第一问利用线面平行的判定定理,,得到

第二问中,利用,所以

又因为,从而得

第三问中,借助于等体积法来求解三棱锥B-EFC的体积.

(Ⅰ)证明: 分别是的中点,    

.       …4分

(Ⅱ)证明:四边形为正方形,

.    ………8分

(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,

 

查看答案和解析>>

(本小题满分12分)

已知椭圆分别为左,右焦点,离心率为,点在椭圆上且满足: ,过右焦点与坐标轴不垂直的直线交椭圆于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)在线段上是否存在点使得以线段为邻边的四边形是菱

形?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

“因为四边形是菱形,所以四边形的对角线互相垂直”,补充以上推理

的大前提为                               

查看答案和解析>>


同步练习册答案