二.填空题15.在实数范围内分解因式: . 查看更多

 

题目列表(包括答案和解析)

在实数范围内分解因式:=             . 

 

查看答案和解析>>

阅读题:
分解因式:x2+2x-3
解:原式=x2+2x+1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.
请体会配方法的特点,然后用配方法解决下列问题:
在实数范围内分解因式:4a2+4a-1.

查看答案和解析>>

(2012•河口区二模)在实数范围内分解因式:x2-2x=
x(x-2)
x(x-2)

查看答案和解析>>

(2012•闵行区二模)在实数范围内分解因式:2x3-4x=
2x(x+
2
)(x-
2
2x(x+
2
)(x-
2

查看答案和解析>>

下面的四个结论,回答问题.
①x2-3x+2=0的两根为x1=1,x2=2;
②(x-1)(x-2)=0的两根为x1=1,x2=2;
③(x-1)(x-2)=x2-3x+2;
④二次三项式x2-3x+2可分解为(x-1)(x-2).
猜测
若关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px+q可分解为
 

应用在实数范围内分解因式:
(1)2x2-4x+2
(2)
1
3
x2-
2
3
x-1

(3)x2-2x-2

查看答案和解析>>


同步练习册答案