24.解:(1) y=-x2+nx,-------------------------2分 (2)∵在Rt△OMN中tan∠NOP=2.而tan∠NOP=. ∵AD⊥x轴.A(4.4).D(4.6).∴OM=4.MN=8.N(4.8).-----3分 ∴将点N的坐标代入y=-x2+nx.得n=6.即y=-x2+6x.---------4分 ∵Q(m.2m-5)在抛物线上. ∴2m-5=-m2+6m.即m2-4m-5=0.------------------5分 ∴m=5或m=-1.---------------------------7分 ∵点Q在第一象限.∴Q(5.5).---------------------8分 ∵直线MN为x=4. ∴点Q关于直线MN对称的点的坐标为(3.5),-------------9分 (3)5≤n≤7.-----------------------------11分 查看更多

 

题目列表(包括答案和解析)

(10分)阅读下面材料:解答问题

为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.

当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,

故原方程的解为  x1=,x2=-,x3=,x4=-.

上述解题方法叫做换元法;

请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为  x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

查看答案和解析>>

阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,
解得y1=1,y2=4.当y=1时,x2-1=1,
∴x2=2,
∴x=±;当y=4时,x2-1=4,
∴x2=5,
∴x=±
故原方程的解为  x1,x2=-,x3,x4=-
上述解题方法叫做换元法;
请利用换元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>

阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为  x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

(10分)阅读下面材料:解答问题

为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为  y2-5y+4=0,解得y1=1,y2=4.

当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,

故原方程的解为  x1=,x2=-,x3=,x4=-.

上述解题方法叫做换元法;

请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>


同步练习册答案