27.如图.在平面直角坐标系中.直线y=-2x+42交x轴于点A.交直线y=x于点B.抛物线y=ax 2-2x+c分别交线段AB.OB于点C.D.点C和点D的横坐标分别为16和4.点P在这条抛物线上. (1)求a.c的值. (2)若Q为线段OB上一点.且P.Q两点的纵坐标都 为5.求线段PQ的长. (3)若Q为线段OB或线段AB上的一点.PQ⊥x轴.设P.Q两点之间的距离为d(d >0).点Q的横坐标为m.求d随m的增大而减小时m的取值范围. (4)若min{ y1.y2.y3}表示y1.y2.y3三个函数中的最小值.则函数y=min{-2x+42.x.ax 2-2x+c}的最大值为 ▲ . 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)如图,在平面直角坐标系中,直线l沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).

(1)求直线AB的解析式;

(2)若线段DFx轴,求抛物线的解析式;

(3)如图,在(2)的条件下,过FFHx轴于点G,与直线l交于点H,在抛物线上是否存在PQ两点(点P在点Q的上方),PQAF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出PQ的坐标,若不存在,请说明理由.

 

查看答案和解析>>

(本题满分12分)

如图,在平面直角坐标系中,抛物线与x轴的右交点为点A,与y

 

轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标和抛物线的顶点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形?

(3)请说明当0<t<4.5时,△PQF的面积总为定值;

(4)当0≤t≤4.5是否存在△PQF为等腰三角形?当t为何值时,△PQF为等腰三角形?(直接写出结果)

 

查看答案和解析>>

(本题满分12分)

如图,在平面直角坐标系中,已知抛物线轴于两点,交轴于点.

(1)求此抛物线的解析式;

(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF的长;

(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.

 

查看答案和解析>>

(本题满分12分)如图,在平面直角坐标系中,直线l沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).
(1)求直线AB的解析式;
(2)若线段DFx轴,求抛物线的解析式;
(3)如图,在(2)的条件下,过FFHx轴于点G,与直线l交于点H,在抛物线上是否存在PQ两点(点P在点Q的上方),PQAF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出PQ的坐标,若不存在,请说明理由.

查看答案和解析>>

(本题满分12分)
如图,在平面直角坐标系中,抛物线与x轴的右交点为点A,与y
轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?
(3)请说明当0<t<4.5时,△PQF的面积总为定值;
(4)当0≤t≤4.5是否存在△PQF为等腰三角形?当t为何值时,△PQF为等腰三角形?(直接写出结果)

查看答案和解析>>


同步练习册答案