题目列表(包括答案和解析)
ln(2-x2) | |x+2|-2 |
|
(08年三校联考理) 已知函数f(x)=sin()(
)的最小正周期为
,则该函数的图象
A. 关于点(,0)对称 B. 关于直线x=
对称
C. 关于点(,0)对称 D. 关于直线x=
对称
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=,N=
,且MN=
。
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2
sin
。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集为
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。
已知函数f(x)=cos(2x+)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
第二问中,∵xÎ[0, ],∴2x-
Î[-
,
],
∴当2x-=-
,即x=0时,f(x)min=-
,
当2x-=
,
即x=
时,f(x)max=1
第三问中,(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
利用构造角得到sin2a=sin[(2a-)+
]
解:⑴ f(x)=cos2x-
sin2x-cos2x+
sin2x ………2分
=sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令+2kp≤2x-
≤
+2kp,
解得+kp≤x≤
+kp
……………………5分
∴ f(x)的减区间是[+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-
Î[-
,
], ……………………7分
∴当2x-=-
,即x=0时,f(x)min=-
, ……………………8分
当2x-=
,
即x=
时,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-)+
]
=sin(2a-)·cos
+cos(2a-
)·sin
………12分
=×
+
×
=
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com