7.设f(x)=若f(f(1))=1.则a= . [解析] f(1)=lg 1=0.3t2dt=t3=a3. 则f(f(1))=f(0)=a3=1.∴a=1. [答案] 1 查看更多

 

题目列表(包括答案和解析)

设集合Pn={1,2,…,n},n∈N+.记f(n)为同时满足下列条件的集合A的个数:

①APn

②若x∈A,则2xA;

③若x∈A,则2xA.

(1)求f(4);

(2)求f(n)的解析式(用n表示).

查看答案和解析>>

设二次函数f(x)=ax2+bx+c的图象以y轴为对称轴,已知a+b=1,而且若点(x,y)在y=f(x)的图象上,则点(x,y2+1)在函数g(x)=f(f(x))的图象上

(1)求g(x)的解析式

(2)设F(x)=g(x)-λf(x),问是否存在实数λ,使F(x)在(-∞,-)内是减函数,在(-,0)内是增函数.

查看答案和解析>>

已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为-1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.证明:当x>1时,函数f(x)不存在“保值区间”;

查看答案和解析>>

设函数f(x)a2x2(a0)g(x)blnx

(1)将函数yf(x)图象向右平移一个单位即可得到函数yφ(x)的图象,试写出yφ(x)的解析式及值域;

(2)关于x的不等式(x1)2f(x)的解集中的整数恰有3个,求实数a的取值范围;

(3)对于函数f(x)g(x)定义域上的任意实数x,若存在常数km,使得f(x)kxmg(x)kxm都成立,则称直线ykxm为函数f(x)g(x)的“分界线”.设be,试探究f(x)g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>


同步练习册答案