17.一组数:2. 1. 3. x. 7. y. 23.-.满足“从第三个数起.前两个数依次为a.b.紧随其后的数就是2a-b .例如这组数中的第三个数“3 是由“2×2-1 得到的.那么这组数中y表示的数为 . 查看更多

 

题目列表(包括答案和解析)

如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B精英家教网、C不重合),连接A、E.若a、b满足
b-6=0
2a-b=10
,且c是不等式组
x+12
4
≤x+6
2x+2
3
>x-3
的最大整数解.
(1)求a、b、c的长.
(2)若AE平分△ABC的周长,求∠BEA的大小.

查看答案和解析>>

如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足
b-6=0
2a-b=10
,且c是不等式组
x+12
4
≤x+6
2x+2
3
>x-3
的最大整数解.
(1)求a、b、c的长.
(2)若AE平分△ABC的周长,求∠BEA的大小.

查看答案和解析>>

精英家教网已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组
x+2
4
≤x+6
2x+2
3
>x-3
的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,y表示△AEF的面积,试写出y关于x的函数关系式;
(3)在(1)的条件得到满足的△ABC中,是否存在线段EF,将△ABC的周长和面积同时平分?若存在,则求出AE的长;若不存在,请说明理由.

查看答案和解析>>

已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组
x+12
4
≤x+6
2x+2
3
>x-3
的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,y表示△AEF的面积,试写出y关于x的函数关系式.

查看答案和解析>>

在某校组织的社会实践活动中,小明同学到某超市进行了一项社会调查,发现有一种水果1-6月份售价y(元/kg)与时间t(月)的关系可用一条线段上的点来表示,如图所示,该水果的成本m(元/kg)与时间t(月)满足二次函数关系,相应的数据如表所示.根据图象提供的信息,解答下列问题:
(1)求售价y(元/kg)与时间t(月)之间的函数关系式.
(2)求表中成本m(元/kg)与时间t(月)之间的函数关系式.
(3)你能求出每千克水果的利润W(元/kg)与时间t(月)之间的函数关系式吗?若该超市在1-6月份每月都销售水果3000kg,请问一个月内最多获利多少元?
t(月)1 23
m(元/kg)数学公式 数学公式 3

查看答案和解析>>


同步练习册答案