26.如图.二次函数y=ax2+bx+c(a<0)的图像过坐标原点O.与x轴的负半轴交于点A.过A点的直线与y轴交于B.与二次函数的图像交于另一点C.且C点的横坐标-1.AC:BC=3:1. (1)求点A的坐标,精英数学教辅网(www.jymaths.com) (2)设二次函数图像的顶点为F.其对称轴与直线AB及x轴分别交于点D和点E.若△FCD与△AED相似.求此二次函数的关系式. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长
为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形
ABCD的面积为S平方米.

【小题1】(1)求Sx之间的函数关系式(不要求写出自变量x的取值范围)
【小题2】(2)当x为何值时,S有最大值?并求出最大值.
(参考公式:二次函数),当时,)

查看答案和解析>>

(本题满分10分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长
为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形
ABCD的面积为S平方米.

【小题1】(1)求Sx之间的函数关系式(不要求写出自变量x的取值范围)
【小题2】(2)当x为何值时,S有最大值?并求出最大值.
(参考公式:二次函数),当时,)

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(11·永州)(本题满分10分)如图,已知二次函数的图象经过

A(),B(0,7)两点.

⑴ 求该抛物线的解析式及对称轴;

⑵ 当为何值时,

⑶ 在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),

过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.

 

查看答案和解析>>


同步练习册答案