如图.矩形ABCD的边AB=3cm.AD=4cm.点E从点A出发.沿射线AD移动.以CE为直径作圆O.点F为圆O与射线BD的公共点.连接EF.CF.过点E作EG⊥EF.EG与圆O相交于点G.连接CG. (1)试说明四边形EFCG是矩形, (2)当圆O与射线BD相切时.点E停止移动.在点E移动的过程中. ①矩形EFCG的面积是否存在最大值或最小值?若存在.求出这个最大值或最小值,若不存在.说明理由, ②求点G移动路线的长. 查看更多

 

题目列表(包括答案和解析)

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;

1.(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是     ;(1分)

2.(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),

3.① 试用含的代数式表示∠HAE=              ;(1分)

4.② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

 

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
【小题1】(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是    ;(1分)
【小题2】(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
【小题3】① 试用含的代数式表示∠HAE=              ;(1分)
【小题4】② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
【小题1】(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是    ;(1分)
【小题2】(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
【小题3】① 试用含的代数式表示∠HAE=              ;(1分)
【小题4】② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;

1.(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是     ;(1分)

2.(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),

3.① 试用含的代数式表示∠HAE=               ;(1分)

4.② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

 

查看答案和解析>>

(本题10分) 以四边形ABCD的边ABBCCDDA为斜边分别向外侧作等腰直角三角形,直角顶点分别为EFGH,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;
小题1:(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是    ;(1分)
小题2:(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
小题3:① 试用含的代数式表示∠HAE=              ;(1分)
小题4:② 求证:HE=HG;(4分)③ 四边形EFGH是什么四边形?并说明理由.(4分)

查看答案和解析>>


同步练习册答案