题目列表(包括答案和解析)
(本小题满分18分)如图,将圆分成个扇形区域,用3种不同颜色给每一个扇形区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求
(Ⅰ);
(Ⅱ)与的关系式;
(Ⅲ)数列的通项公式,并证明。
(本小题满分18分)过直线上的点作椭圆的切线、,切点分别为、,联结(1)当点在直线上运动时,证明:直线恒过定点;
(2)当∥时,定点平分线段
(本小题满分18分)知函数的图象的一部分如下图所示。
(1)求函数的解析式;
(2
(本小题满分18分)已知函数,
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在()上存在一点,使得成立,求的取值范围.
一、填空题(本大题满分48分,每小题4分,共12小题)
1.; 2.; 3.; 4.; 5.;
6.; 7.; 8.; 9.; 10.;
11.; 12..
二、选择题(本大题满分16分,每小题4分,共4小题)
13.C; 14.A; 15.B; 16.C;
三、解答题(本大题满分86分,本大题共有6题)
17.(1);
(2);
18.1号至4号正四棱柱形容器是体积依次为。
∵ ,,
∴ 存在必胜方案,即选择3号和4号容器。
19.(1)∵ 由正弦定理,,∴ ,。
∵ , ∴ ,即。∴ 。
(2)∵ ,
∴ 。
20.(1)设放水分钟内水箱中的水量为升
依题意得;
分钟时,水箱的水量升, 放水后分钟水箱内水量接近最少;
(2)该淋浴器一次有个人连续洗浴, 于是,,
所以,一次可最多连续供7人洗浴。
21.(1)由及,∴时成等比数列。
(2)因,由(1)知,,故。
(3)设存在,使得成等差数列,则,
即因,所以,
∴不存在中的连续三项使得它们可以构成等差数列。
22.(1)解:设为函数图像的一个对称点,则对于恒成立.即对于恒成立,
由,故图像的一个对称点为.
(2)解:假设是函数(的图像的一个对称点,
则(对于恒成立,
即对于恒成立,因为,所以不
恒成立,
即函数(的图像无对称点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com