③“向量的方向相反 是“互为相反向量 的充分不必要条件 查看更多

 

题目列表(包括答案和解析)

p:方向相反;  q:互为相反向量;  r:||=||. 则         (      )

A.p是q的必要条件,q是r的必要条件

B.p是q的充分条件,q是r的充分条件

C.p是q的必要条件,q是r的充分条件

D.p是q的充分条件,q是r的必要条件

 

 

查看答案和解析>>

有下列五个命题:

   ①“若,则互为相反数”的逆命题;

   ②在平面内,F1、F2是定点,,动点M满足|,则点M的轨迹是双曲线。

   ③“在中,“”是“三个角成等差数列”的充要条件.

④“若则方程是椭圆”。

⑤已知向量是空间的一个基底,则向量也是空间的一个基底。其中真命题的序号是              .

查看答案和解析>>

已知下列命题:①++=0;②若向量=(-3,4),则按向量a=(-2,1)平移后的坐标仍是(-3,4);③“向量b与向量a的方向相反”是“b与a互为相反向量”的充分不必要条件;④已知点M是△ABC的重心,则++=0.

查看答案和解析>>

已知下列命题:①=0;②若向量=(-3,4),则按向量a=(-2,1)平移后的坐标仍是(-3,4);③“向量b与向量a的方向相反”是“b与a互为相反向量”的充分不必要条件;④已知点M是△ABC的重心,则=0.其中正确命题的序号是________(把你认为正确命题的序号都填上).

查看答案和解析>>

有下列五个命题:

①“若,则x,y互为相反数”的逆命题;

②在平面内,F1、F2是定点,|F1F2|=6,动点M满足|,则点M的轨迹是双曲线.

③“在△ABC中,“”是“三个角成等差数列”的充要条件.

④“若-3<m<5则方程是椭圆”.

⑤已知向量是空间的一个基底,则向量也是空间的一个基底.其中真命题的序号是________.

查看答案和解析>>

 

一、选择题

1―12  CBDBA  ACCAD  BA

二、填空题

13.    14.   15.(理)   (文)16.②④

三、解答题

17.解(1)设向量的夹角

…………………………………………2分

向量的夹角为;…………………………4分

向量的夹角为;……………………6分

(2)|对任意的恒成立,

,

对任意的恒成立。

恒成立……………………8分

所以…………………………10分

解得:

故所求实数的取值范围是………………12分

18.(理)解:(1)的取值为1,3。

…………………………1分

…………………………3分

的分布列为

1

3

P

 

…………………………5分

………………………………6分

(2)当S8=2时,即前8分钟出现“红灯”5次和“绿灯”3次,有已知 若第一、三分钟出现“红灯”,则其余六分钟可出现“红灯”3次………………8分

若第一、二分钟出现“红灯”,第三分钟出现“绿灯”,则其后五分钟可出现“红灯”3次…………………………10分

故此时的概率为……………………12分

(文)解:(1)若第一个路口为红灯,则第二个路口为绿灯的概率为

;…………………………2分

若第一个路口为绿灯,则第二个路口为绿灯的概率为…………4分

∴经过第二个路口时,遇到绿灯的概率是…………6分

(2)若第一个路口为红灯,其它两个路口为绿灯的概率为

;…………………………8分

若第二个路口为红灯,其它两个路口为绿灯的概率为:

………………………………10分

若第三个路口为红灯,其它两个路口为绿灯的概率为:

…………………………11分

∴经过三个路口,出现一次红灯,两次绿灯的概率是………………12分

19.(理)解:(1)求满足条件①的a的取值范围,

函数的定义域为取任意实数时,

…………………………2分

解得:a<1…………………………3分

求满足条件②的a的取值范围

……………………4分

可得,

说明:当

又当

∴对任意的实数x,恒有…………………………6分

要使得x取任意实数时,不等式恒成立,

须且只须…………………………7分

由①②可得,同时满足条件(i)、(ii)的实数a的取值范围为:

…………………………8分

(2)

……………………10分

∴不等式的解集是:

…………………………12分

(文)解:(1)…………4分

(2)解法一  ………………6分

因为,所以……………………00分

解得:………………12分

解法二:当x=0时,恒成立;………………5分

当x>0时,原式或化为,………………9分

因为时取等号)………………11分

20.解法一:(1)连结AC,交BD于0,

则O为AC的中点,连结EO。

∵PA//平面BDE,平面PAC平面BDE=OE,

∴PA//OE…………………………2分

∴点E是PC的中点。…………………………3分

(2)∵PD⊥底面ABCD,且DC底面ABCD,

∴PD⊥DC,△PDC是等腰直角三角形,……………………4分

而DE是斜边PC的中线,

∴DE⊥PC,  ①

又由PD⊥平面ABCD得,PD⊥BC。…………………………6分

∵底面ABCD是正方形,CD⊥BC,

∴BC⊥平面PDC,

而DE平面PDC,

∴BC⊥DE   ② ……………………7分

由①和②推得DE⊥平面PBC,而PB平面PBC

∴DE⊥PB,又DF⊥PB且DEDF=D,

所以PB⊥平面EFD,…………………………8分

(3)由(2)知,PB⊥EF,已知PB⊥DF,故∠EFD是二面角C―PB―D的平面角,

………………9分

由(2)知,DF⊥EF,PD⊥DB。

设正方形ABCD的边长为a,则PD=DC=a,BD=

……………………10分

在Rt△EFD中,

所以,二面角C―PB―D的大小为……………………12分

 

解法二:(1)同解法一……………………3分

(2)如图所示建立空间直角坐标系,D为坐标原点,

设DC=a,依题意得

P(0,0,a),B(a,a,0),C(0,a,0   ),

E(0, ),A(a,0,0),D(0,0,0),

………………4分

…………………………6分

由已知DF⊥PB,且DFDE=D,

所以PB⊥平面EFD。………………………………8分

(3)由(2)得

设平面PBC的法向量为n=(x,y,z),

m为平面PBD的法向量,由

平面PBD

又因为二面角C―PB―D为锐角,所以其大小为……………………12分

21.解:设

因为两准线与x轴的交点分别为

 ……………………1分

由题意知

………………………………3分

则点N的坐标为N(),

即N………………………………4分

所以………………5分

………………………………6分

       当x≠0时,代入,=得:=……………………8分

       所以

       即                                                               …………………10分

       当x=0时,点P的坐标为P(0,),

       点M的坐标满足条件:=

       点M的坐标满足条件:=

       显然推出与已知双曲线中≠0矛盾。

       所以P点的轨迹方程为.(x≠0,y≠0)      ……………………12分

22.解:

   (1)由………2分

       所以

即所求数列{an}的通项公式为………………4分

   (2)若n为奇数,则…………5分

       =……………………7分

       =4-3                                                                             …………………9分

       若n为偶数,则………………10分

       =            …………………12分

       =4-4                                                                               …………………14分

 

 


同步练习册答案