17. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)二次函数的图象经过三点.

(1)求函数的解析式(2)求函数在区间上的最大值和最小值

查看答案和解析>>

(本小题满分12分)已知等比数列{an}中, 

   (Ⅰ)求数列{an}的通项公式an

   (Ⅱ)设数列{an}的前n项和为Sn,证明:

   (Ⅲ)设,证明:对任意的正整数n、m,均有

查看答案和解析>>

(本小题满分12分)已知函数,其中a为常数.

   (Ⅰ)若当恒成立,求a的取值范围;

   (Ⅱ)求的单调区间.

查看答案和解析>>

(本小题满分12分)

甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为

   (Ⅰ)求甲至多命中2个且乙至少命中2个的概率;

   (Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.

查看答案和解析>>

(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.

   (1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m        

   (2)当时,求弦长|AB|的取值范围.

查看答案和解析>>

 

一、选择题

1―12  CBDBA  ACCAD  BA

二、填空题

13.    14.   15.(理)   (文)16.②④

三、解答题

17.解(1)设向量的夹角

…………………………………………2分

向量的夹角为;…………………………4分

向量的夹角为;……………………6分

(2)|对任意的恒成立,

,

对任意的恒成立。

恒成立……………………8分

所以…………………………10分

解得:

故所求实数的取值范围是………………12分

18.(理)解:(1)的取值为1,3。

…………………………1分

…………………………3分

的分布列为

1

3

P

 

…………………………5分

………………………………6分

(2)当S8=2时,即前8分钟出现“红灯”5次和“绿灯”3次,有已知 若第一、三分钟出现“红灯”,则其余六分钟可出现“红灯”3次………………8分

若第一、二分钟出现“红灯”,第三分钟出现“绿灯”,则其后五分钟可出现“红灯”3次…………………………10分

故此时的概率为……………………12分

(文)解:(1)若第一个路口为红灯,则第二个路口为绿灯的概率为

;…………………………2分

若第一个路口为绿灯,则第二个路口为绿灯的概率为…………4分

∴经过第二个路口时,遇到绿灯的概率是…………6分

(2)若第一个路口为红灯,其它两个路口为绿灯的概率为

;…………………………8分

若第二个路口为红灯,其它两个路口为绿灯的概率为:

………………………………10分

若第三个路口为红灯,其它两个路口为绿灯的概率为:

…………………………11分

∴经过三个路口,出现一次红灯,两次绿灯的概率是………………12分

19.(理)解:(1)求满足条件①的a的取值范围,

函数的定义域为取任意实数时,

…………………………2分

解得:a<1…………………………3分

求满足条件②的a的取值范围

……………………4分

可得,

说明:当

又当

∴对任意的实数x,恒有…………………………6分

要使得x取任意实数时,不等式恒成立,

须且只须…………………………7分

由①②可得,同时满足条件(i)、(ii)的实数a的取值范围为:

…………………………8分

(2)

……………………10分

∴不等式的解集是:

…………………………12分

(文)解:(1)…………4分

(2)解法一  ………………6分

因为,所以……………………00分

解得:………………12分

解法二:当x=0时,恒成立;………………5分

当x>0时,原式或化为,………………9分

因为时取等号)………………11分

20.解法一:(1)连结AC,交BD于0,

则O为AC的中点,连结EO。

∵PA//平面BDE,平面PAC平面BDE=OE,

∴PA//OE…………………………2分

∴点E是PC的中点。…………………………3分

(2)∵PD⊥底面ABCD,且DC底面ABCD,

∴PD⊥DC,△PDC是等腰直角三角形,……………………4分

而DE是斜边PC的中线,

∴DE⊥PC,  ①

又由PD⊥平面ABCD得,PD⊥BC。…………………………6分

∵底面ABCD是正方形,CD⊥BC,

∴BC⊥平面PDC,

而DE平面PDC,

∴BC⊥DE   ② ……………………7分

由①和②推得DE⊥平面PBC,而PB平面PBC

∴DE⊥PB,又DF⊥PB且DEDF=D,

所以PB⊥平面EFD,…………………………8分

(3)由(2)知,PB⊥EF,已知PB⊥DF,故∠EFD是二面角C―PB―D的平面角,

………………9分

由(2)知,DF⊥EF,PD⊥DB。

设正方形ABCD的边长为a,则PD=DC=a,BD=

……………………10分

在Rt△EFD中,

所以,二面角C―PB―D的大小为……………………12分

 

解法二:(1)同解法一……………………3分

(2)如图所示建立空间直角坐标系,D为坐标原点,

设DC=a,依题意得

P(0,0,a),B(a,a,0),C(0,a,0   ),

E(0, ),A(a,0,0),D(0,0,0),

………………4分

…………………………6分

由已知DF⊥PB,且DFDE=D,

所以PB⊥平面EFD。………………………………8分

(3)由(2)得

设平面PBC的法向量为n=(x,y,z),

m为平面PBD的法向量,由

平面PBD

又因为二面角C―PB―D为锐角,所以其大小为……………………12分

21.解:设

因为两准线与x轴的交点分别为

 ……………………1分

由题意知

………………………………3分

则点N的坐标为N(),

即N………………………………4分

所以………………5分

………………………………6分

       当x≠0时,代入,=得:=……………………8分

       所以

       即                                                               …………………10分

       当x=0时,点P的坐标为P(0,),

       点M的坐标满足条件:=

       点M的坐标满足条件:=

       显然推出与已知双曲线中≠0矛盾。

       所以P点的轨迹方程为.(x≠0,y≠0)      ……………………12分

22.解:

   (1)由………2分

       所以

即所求数列{an}的通项公式为………………4分

   (2)若n为奇数,则…………5分

       =……………………7分

       =4-3                                                                             …………………9分

       若n为偶数,则………………10分

       =            …………………12分

       =4-4                                                                               …………………14分

 

 


同步练习册答案