题目列表(包括答案和解析)
(本小题满分13分)已知焦点在x轴上的双曲线C的两条渐近线相交于坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知双曲线C的一个焦点与点A关于直线y=x对称.
(1)求双曲线C的标准方程;
(2)若Q是双曲线C上的任一点,F1、F2分别是双曲线C的左、右焦点,从点F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.
(3)设直线y=mx+1与双曲线C的左支交于A、B两点,另一直线L经过点M(-2,0)和线段AB的中点,求直线L在y轴上的截距b的取值范围
一、选择题
1―12 CBDBA ACCAD BA
二、填空题
13. 14. 15.(理) (文)16.②④
三、解答题
17.解(1)设向量的夹角
则
…………………………………………2分
当
向量的夹角为;…………………………4分
当
向量的夹角为;……………………6分
(2)|对任意的恒成立,
即,
对任意的恒成立。
即恒成立……………………8分
所以…………………………10分
解得:
故所求实数的取值范围是………………12分
18.(理)解:(1)的取值为1,3。
又…………………………1分
…………………………3分
的分布列为
1
3
P
…………………………5分
………………………………6分
(2)当S8=2时,即前8分钟出现“红灯”5次和“绿灯”3次,有已知 若第一、三分钟出现“红灯”,则其余六分钟可出现“红灯”3次………………8分
若第一、二分钟出现“红灯”,第三分钟出现“绿灯”,则其后五分钟可出现“红灯”3次…………………………10分
故此时的概率为……………………12分
(文)解:(1)若第一个路口为红灯,则第二个路口为绿灯的概率为
;…………………………2分
若第一个路口为绿灯,则第二个路口为绿灯的概率为…………4分
∴经过第二个路口时,遇到绿灯的概率是…………6分
(2)若第一个路口为红灯,其它两个路口为绿灯的概率为
;…………………………8分
若第二个路口为红灯,其它两个路口为绿灯的概率为:
………………………………10分
若第三个路口为红灯,其它两个路口为绿灯的概率为:
…………………………11分
∴经过三个路口,出现一次红灯,两次绿灯的概率是………………12分
19.(理)解:(1)求满足条件①的a的取值范围,
函数的定义域为取任意实数时,
即…………………………2分
解得:a<1…………………………3分
求满足条件②的a的取值范围
设……………………4分
由可得,
说明:当
又当
∴对任意的实数x,恒有…………………………6分
要使得x取任意实数时,不等式恒成立,
须且只须…………………………7分
由①②可得,同时满足条件(i)、(ii)的实数a的取值范围为:
…………………………8分
(2)
……………………10分
即
∴不等式的解集是:
…………………………12分
(文)解:(1)…………4分
(2)解法一 ………………6分
因为,所以……………………00分
解得:………………12分
解法二:当x=0时,恒成立;………………5分
当x>0时,原式或化为,………………9分
因为时取等号)………………11分
|