题目列表(包括答案和解析)
(05年北京卷理)(14分)
设是定义在[0,1]上的函数,若存在,使得在[0,]上单调递增,在[,1]单调递减,则称为[0,1]上的单峰函数,为峰点,包含峰点的区间为含峰区间对任意的[0,1]上的单峰函数,下面研究缩短其含峰区间长度的方法
(Ⅰ)证明:对任意的 , ,若,则(0,)为含峰区间;若,则(,1)为含峰区间;
(Ⅱ)对给定的(0<<0.5),证明:存在,满足,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+;
(Ⅲ)选取, 由(Ⅰ)可确定含峰区间为(0,)或(,1),在所得的含峰区间内选取,由与或与类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34
(区间长度等于区间的右端点与左端点之差)
(北京卷理5)若实数满足则的最小值是( )
A.0 B.1 C. D.9
(北京卷理5)若实数满足则的最小值是( )
A.0 B.1 C. D.9
(04年北京卷理)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种。在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于
(A) (B) (C) (D)
(02年北京卷理)已知且|z1|=1.若,则的最大值是
A.6 B.5 C.4 D.3
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com