题目列表(包括答案和解析)
设函数,若为函数的一个极值点,则下列图象不可能为的图象是
【答案】D
【解析】设,∴,
又∴为的一个极值点,
∴,即,
∴,
当时,,即对称轴所在直线方程为;
当时,,即对称轴所在直线方程应大于1或小于-1.
已知.
(1)求的单调区间;
(2)证明:当时,恒成立;
(3)任取两个不相等的正数,且,若存在使成立,证明:.
【解析】(1)g(x)=lnx+,= (1’)
当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;
当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1 ∴lnx0 –lnx=-1–lnx===(10’) 设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵∴=
∴lnx0 –lnx>0, ∴x0 >x
【解析】T,i关系如下图:
T | 1 |
|
|
|
|
i | 2 | 3 | 4 | 5 | 6 |
【答案】
【练】
(1)(2005高考北京卷)已知函数f(x)=-x3+3x2+9x+a, (I)求f(x)的单调递减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.答案:(1)(-∞,-1),(3,+∞)(2)-7
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com