25. 如图1,在四边形ABCD中..BC∥AD.BC=20.DC=16.AD=30.动点P从点D出发.沿射线DA的方向以每秒2个单位长的速度运动.动点Q从点C出发.在线段CB上以每秒1个单位长的速度向点B运动.点P.Q分别从点D.C同时出发.当点Q运动到点B时.点P随之停止运动.设运动时间为t(秒) (1)设△BPQ的面积为S.求S与t之间的函数关系式; (2)当t为何值时.以B.P.Q三点为顶点的三角形是等腰三角形; (3)当线段PQ与线段AB相交于点0.且2AO=OB时.求∠BQP的正切值; (4)是否存在时刻t.使得PQ⊥BD?若存在.求出t的值;若不存在.请说明理由. 解: 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

【小题1】(1)若取AE的中点P,求证:BP=CF;
【小题2】(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
【小题3】(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

【小题1】(1)若取AE的中点P,求证:BP=CF;
【小题2】(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
【小题3】(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>

(本小题满分14分)

如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

1.(1)若取AE的中点P,求证:BP=CF;

2.(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;

3.(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

 

查看答案和解析>>

(本小题满分14分)

如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

1.(1)若取AE的中点P,求证:BP=CF;

2.(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;

3.(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

 

查看答案和解析>>

(本小题满分14分)
如图①,已知四边形ABCD是正方形,点E是AB的中点,点F在边CB的延长线上,且BE=BF,连接EF.

小题1:(1)若取AE的中点P,求证:BP=CF;
小题2:(2)在图①中,若将绕点B顺时针方向旋转(00<<3600),如图②,是否存在某位置,使得?,若存在,求出所有可能的旋转角的大小;若不存在,请说明理由;
小题3:(3)在图①中,若将△BEF绕点B顺时针旋转(00<<900),如图③,取AE的中点P,连接BP、CF,求证:BP=CF且BP⊥CF.

查看答案和解析>>


同步练习册答案